Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network

In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Doan, Van-Sang, Huynh-The, Thien, Kim, Dong-Seong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Doan, Van-Sang
Huynh-The, Thien
Kim, Dong-Seong
description In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time-frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models.
doi_str_mv 10.1109/LGRS.2020.3029584
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9229102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229102</ieee_id><sourcerecordid>2610182946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dbcce3693f9eb1faab652777c5627459aa19e9c2235430a224110401e406b67c3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZ3CRt8zjrnMJQ0A18C2l2K521mUnr8N_buuHTOXDPudz7EXLJ6IQxqm4W85fXCVCgE05ByUwckRGTMoupTNnx4IWMpcreTslZCBtKQWRZOiKrVbNGvzMt-mhqXRfaykZL49-xjfLahFCVlTVt5Zro1gRcR725wyZglLvm29XdMDJ19ISd_5N25_zHOTkpTR3w4qBjsrqfLfOHePE8f8yni9iC4m28LqxFniheKixYaUyRSEjT1MoEUiGVMUyhsgBcCk4NgOh_FZShoEmRpJaPyfV-79a7rw5Dqzeu8_09QUPCKMtAiaRPsX3KeheCx1JvffVp_I9mVA_09EBPD_T0gV7fudp3KkT8zysAxSjwX_BTayE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610182946</pqid></control><display><type>article</type><title>Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Doan, Van-Sang ; Huynh-The, Thien ; Kim, Dong-Seong</creator><creatorcontrib>Doan, Van-Sang ; Huynh-The, Thien ; Kim, Dong-Seong</creatorcontrib><description>In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time-frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2020.3029584</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Audio data ; Big Data ; Classification ; Computer applications ; Computer architecture ; Convolution ; Convolutional neural network (CNN) ; Data analysis ; Data models ; Feature extraction ; Feature maps ; Learning algorithms ; Machine learning ; Modelling ; Network architecture ; Neural networks ; Noise levels ; Passive sonar ; Remote sensing ; Signal to noise ratio ; Sonar ; sonar system ; Sound propagation ; Sound waves ; Target recognition ; Underwater ; Underwater acoustics ; underwater target recognition ; Wave propagation</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dbcce3693f9eb1faab652777c5627459aa19e9c2235430a224110401e406b67c3</citedby><cites>FETCH-LOGICAL-c293t-dbcce3693f9eb1faab652777c5627459aa19e9c2235430a224110401e406b67c3</cites><orcidid>0000-0002-9172-2935 ; 0000-0002-2977-5964 ; 0000-0001-9048-4341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9229102$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doan, Van-Sang</creatorcontrib><creatorcontrib>Huynh-The, Thien</creatorcontrib><creatorcontrib>Kim, Dong-Seong</creatorcontrib><title>Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time-frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Audio data</subject><subject>Big Data</subject><subject>Classification</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Convolutional neural network (CNN)</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Network architecture</subject><subject>Neural networks</subject><subject>Noise levels</subject><subject>Passive sonar</subject><subject>Remote sensing</subject><subject>Signal to noise ratio</subject><subject>Sonar</subject><subject>sonar system</subject><subject>Sound propagation</subject><subject>Sound waves</subject><subject>Target recognition</subject><subject>Underwater</subject><subject>Underwater acoustics</subject><subject>underwater target recognition</subject><subject>Wave propagation</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZ3CRt8zjrnMJQ0A18C2l2K521mUnr8N_buuHTOXDPudz7EXLJ6IQxqm4W85fXCVCgE05ByUwckRGTMoupTNnx4IWMpcreTslZCBtKQWRZOiKrVbNGvzMt-mhqXRfaykZL49-xjfLahFCVlTVt5Zro1gRcR725wyZglLvm29XdMDJ19ISd_5N25_zHOTkpTR3w4qBjsrqfLfOHePE8f8yni9iC4m28LqxFniheKixYaUyRSEjT1MoEUiGVMUyhsgBcCk4NgOh_FZShoEmRpJaPyfV-79a7rw5Dqzeu8_09QUPCKMtAiaRPsX3KeheCx1JvffVp_I9mVA_09EBPD_T0gV7fudp3KkT8zysAxSjwX_BTayE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Doan, Van-Sang</creator><creator>Huynh-The, Thien</creator><creator>Kim, Dong-Seong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9172-2935</orcidid><orcidid>https://orcid.org/0000-0002-2977-5964</orcidid><orcidid>https://orcid.org/0000-0001-9048-4341</orcidid></search><sort><creationdate>2022</creationdate><title>Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network</title><author>Doan, Van-Sang ; Huynh-The, Thien ; Kim, Dong-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dbcce3693f9eb1faab652777c5627459aa19e9c2235430a224110401e406b67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Audio data</topic><topic>Big Data</topic><topic>Classification</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Convolutional neural network (CNN)</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Network architecture</topic><topic>Neural networks</topic><topic>Noise levels</topic><topic>Passive sonar</topic><topic>Remote sensing</topic><topic>Signal to noise ratio</topic><topic>Sonar</topic><topic>sonar system</topic><topic>Sound propagation</topic><topic>Sound waves</topic><topic>Target recognition</topic><topic>Underwater</topic><topic>Underwater acoustics</topic><topic>underwater target recognition</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, Van-Sang</creatorcontrib><creatorcontrib>Huynh-The, Thien</creatorcontrib><creatorcontrib>Kim, Dong-Seong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doan, Van-Sang</au><au>Huynh-The, Thien</au><au>Kim, Dong-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time-frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2020.3029584</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9172-2935</orcidid><orcidid>https://orcid.org/0000-0002-2977-5964</orcidid><orcidid>https://orcid.org/0000-0001-9048-4341</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_9229102
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Audio data
Big Data
Classification
Computer applications
Computer architecture
Convolution
Convolutional neural network (CNN)
Data analysis
Data models
Feature extraction
Feature maps
Learning algorithms
Machine learning
Modelling
Network architecture
Neural networks
Noise levels
Passive sonar
Remote sensing
Signal to noise ratio
Sonar
sonar system
Sound propagation
Sound waves
Target recognition
Underwater
Underwater acoustics
underwater target recognition
Wave propagation
title Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20Acoustic%20Target%20Classification%20Based%20on%20Dense%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Doan,%20Van-Sang&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2020.3029584&rft_dat=%3Cproquest_RIE%3E2610182946%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610182946&rft_id=info:pmid/&rft_ieee_id=9229102&rfr_iscdi=true