Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network
In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typical...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Doan, Van-Sang Huynh-The, Thien Kim, Dong-Seong |
description | In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time-frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models. |
doi_str_mv | 10.1109/LGRS.2020.3029584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9229102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229102</ieee_id><sourcerecordid>2610182946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dbcce3693f9eb1faab652777c5627459aa19e9c2235430a224110401e406b67c3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZ3CRt8zjrnMJQ0A18C2l2K521mUnr8N_buuHTOXDPudz7EXLJ6IQxqm4W85fXCVCgE05ByUwckRGTMoupTNnx4IWMpcreTslZCBtKQWRZOiKrVbNGvzMt-mhqXRfaykZL49-xjfLahFCVlTVt5Zro1gRcR725wyZglLvm29XdMDJ19ISd_5N25_zHOTkpTR3w4qBjsrqfLfOHePE8f8yni9iC4m28LqxFniheKixYaUyRSEjT1MoEUiGVMUyhsgBcCk4NgOh_FZShoEmRpJaPyfV-79a7rw5Dqzeu8_09QUPCKMtAiaRPsX3KeheCx1JvffVp_I9mVA_09EBPD_T0gV7fudp3KkT8zysAxSjwX_BTayE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610182946</pqid></control><display><type>article</type><title>Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Doan, Van-Sang ; Huynh-The, Thien ; Kim, Dong-Seong</creator><creatorcontrib>Doan, Van-Sang ; Huynh-The, Thien ; Kim, Dong-Seong</creatorcontrib><description>In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time-frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2020.3029584</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Audio data ; Big Data ; Classification ; Computer applications ; Computer architecture ; Convolution ; Convolutional neural network (CNN) ; Data analysis ; Data models ; Feature extraction ; Feature maps ; Learning algorithms ; Machine learning ; Modelling ; Network architecture ; Neural networks ; Noise levels ; Passive sonar ; Remote sensing ; Signal to noise ratio ; Sonar ; sonar system ; Sound propagation ; Sound waves ; Target recognition ; Underwater ; Underwater acoustics ; underwater target recognition ; Wave propagation</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dbcce3693f9eb1faab652777c5627459aa19e9c2235430a224110401e406b67c3</citedby><cites>FETCH-LOGICAL-c293t-dbcce3693f9eb1faab652777c5627459aa19e9c2235430a224110401e406b67c3</cites><orcidid>0000-0002-9172-2935 ; 0000-0002-2977-5964 ; 0000-0001-9048-4341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9229102$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doan, Van-Sang</creatorcontrib><creatorcontrib>Huynh-The, Thien</creatorcontrib><creatorcontrib>Kim, Dong-Seong</creatorcontrib><title>Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time-frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Audio data</subject><subject>Big Data</subject><subject>Classification</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Convolutional neural network (CNN)</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Network architecture</subject><subject>Neural networks</subject><subject>Noise levels</subject><subject>Passive sonar</subject><subject>Remote sensing</subject><subject>Signal to noise ratio</subject><subject>Sonar</subject><subject>sonar system</subject><subject>Sound propagation</subject><subject>Sound waves</subject><subject>Target recognition</subject><subject>Underwater</subject><subject>Underwater acoustics</subject><subject>underwater target recognition</subject><subject>Wave propagation</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZ3CRt8zjrnMJQ0A18C2l2K521mUnr8N_buuHTOXDPudz7EXLJ6IQxqm4W85fXCVCgE05ByUwckRGTMoupTNnx4IWMpcreTslZCBtKQWRZOiKrVbNGvzMt-mhqXRfaykZL49-xjfLahFCVlTVt5Zro1gRcR725wyZglLvm29XdMDJ19ISd_5N25_zHOTkpTR3w4qBjsrqfLfOHePE8f8yni9iC4m28LqxFniheKixYaUyRSEjT1MoEUiGVMUyhsgBcCk4NgOh_FZShoEmRpJaPyfV-79a7rw5Dqzeu8_09QUPCKMtAiaRPsX3KeheCx1JvffVp_I9mVA_09EBPD_T0gV7fudp3KkT8zysAxSjwX_BTayE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Doan, Van-Sang</creator><creator>Huynh-The, Thien</creator><creator>Kim, Dong-Seong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9172-2935</orcidid><orcidid>https://orcid.org/0000-0002-2977-5964</orcidid><orcidid>https://orcid.org/0000-0001-9048-4341</orcidid></search><sort><creationdate>2022</creationdate><title>Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network</title><author>Doan, Van-Sang ; Huynh-The, Thien ; Kim, Dong-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dbcce3693f9eb1faab652777c5627459aa19e9c2235430a224110401e406b67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Audio data</topic><topic>Big Data</topic><topic>Classification</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Convolutional neural network (CNN)</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Network architecture</topic><topic>Neural networks</topic><topic>Noise levels</topic><topic>Passive sonar</topic><topic>Remote sensing</topic><topic>Signal to noise ratio</topic><topic>Sonar</topic><topic>sonar system</topic><topic>Sound propagation</topic><topic>Sound waves</topic><topic>Target recognition</topic><topic>Underwater</topic><topic>Underwater acoustics</topic><topic>underwater target recognition</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, Van-Sang</creatorcontrib><creatorcontrib>Huynh-The, Thien</creatorcontrib><creatorcontrib>Kim, Dong-Seong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doan, Van-Sang</au><au>Huynh-The, Thien</au><au>Kim, Dong-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In oceanic remote sensing operations, underwater acoustic target recognition is always a difficult and extremely important task of sonar systems, especially in the condition of complex sound wave propagation characteristics. The expensively learning recognition model for big data analysis is typically an obstacle for most traditional machine learning (ML) algorithms, whereas the convolutional neural network (CNN), a type of deep neural network, can automatically extract features for accurate classification. In this study, we propose an approach using a dense CNN model for underwater target recognition. The network architecture is designed to cleverly reuse all former feature maps to optimize classification rates under various impaired conditions while satisfying low computational cost. In addition, instead of using time-frequency spectrogram images, the proposed scheme allows directly utilizing the original audio signal in the time domain as the network input data. Based on the experimental results evaluated on the real-world data set of passive sonar, our classification model achieves the overall accuracy of 98.85% at 0-dB signal-to-noise ratio (SNR) and outperforms traditional ML techniques, as well as other state-of-the-art CNN models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2020.3029584</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9172-2935</orcidid><orcidid>https://orcid.org/0000-0002-2977-5964</orcidid><orcidid>https://orcid.org/0000-0001-9048-4341</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_9229102 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Audio data Big Data Classification Computer applications Computer architecture Convolution Convolutional neural network (CNN) Data analysis Data models Feature extraction Feature maps Learning algorithms Machine learning Modelling Network architecture Neural networks Noise levels Passive sonar Remote sensing Signal to noise ratio Sonar sonar system Sound propagation Sound waves Target recognition Underwater Underwater acoustics underwater target recognition Wave propagation |
title | Underwater Acoustic Target Classification Based on Dense Convolutional Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20Acoustic%20Target%20Classification%20Based%20on%20Dense%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Doan,%20Van-Sang&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2020.3029584&rft_dat=%3Cproquest_RIE%3E2610182946%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610182946&rft_id=info:pmid/&rft_ieee_id=9229102&rfr_iscdi=true |