Domain Adversarial Reinforcement Learning for Partial Domain Adaptation

Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain (i.e., the target categories are a subset of the source ones), which relaxes the common assumption in traditional domain adaptation that the label space is fully shared across differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-02, Vol.33 (2), p.539-553
Hauptverfasser: Chen, Jin, Wu, Xinxiao, Duan, Lixin, Gao, Shenghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 2
container_start_page 539
container_title IEEE transaction on neural networks and learning systems
container_volume 33
creator Chen, Jin
Wu, Xinxiao
Duan, Lixin
Gao, Shenghua
description Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain (i.e., the target categories are a subset of the source ones), which relaxes the common assumption in traditional domain adaptation that the label space is fully shared across different domains. In this more general and practical scenario on partial domain adaptation, a major challenge is how to select source instances from the shared categories to ensure positive transfer for the target domain. To address this problem, we propose a domain adversarial reinforcement learning (DARL) framework to progressively select source instances to learn transferable features between domains by reducing the domain shift. Specifically, we employ a deep Q-learning to learn policies for an agent to make selection decisions by approximating the action-value function. Moreover, domain adversarial learning is introduced to learn a common feature subspace for the selected source instances and the target instances, and also to contribute to the reward calculation for the agent that is based on the relevance of the selected source instances with respect to the target domain. Extensive experiments on several benchmark data sets clearly demonstrate the superior performance of our proposed DARL over existing state-of-the-art methods for partial domain adaptation.
doi_str_mv 10.1109/TNNLS.2020.3028078
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9228896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9228896</ieee_id><sourcerecordid>2451857013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-99c3b4220932b1c907b5047051019e78380780572017ea474c9a1235f6b779153</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobsz9AQUpeOPN5slJ83U5pk5hTNEJ3oW0S6VjbWfSCv57Ozd7YW4STp73cM5DyDmFMaWgb5aLxfx1jIAwZoAKpDoifaQCR8iUOu7e8r1HhiGsoT0CuIj1KekxBiIWXPfJ7LYqbF5Gk9WX88H63G6iF5eXWeVTV7iyjubO-jIvP6K2FD1bX--QLmW3ta3zqjwjJ5ndBDc83APydn-3nD6M5k-zx-lkPkqZ5vVI65QlMSJohglNNciEQyyBU6DaScV2iwCXCFQ6G8s41ZYi45lIpNSUswG53vfd-uqzcaE2RR5St9nY0lVNMBhzqrgEylr06h-6rhpfttMZFMiZ0FxhS-GeSn0VgneZ2fq8sP7bUDA70-bXtNmZNgfTbejy0LpJCrfqIn9eW-BiD-TOue5bIyqlBfsBoKN-og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625369582</pqid></control><display><type>article</type><title>Domain Adversarial Reinforcement Learning for Partial Domain Adaptation</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jin ; Wu, Xinxiao ; Duan, Lixin ; Gao, Shenghua</creator><creatorcontrib>Chen, Jin ; Wu, Xinxiao ; Duan, Lixin ; Gao, Shenghua</creatorcontrib><description>Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain (i.e., the target categories are a subset of the source ones), which relaxes the common assumption in traditional domain adaptation that the label space is fully shared across different domains. In this more general and practical scenario on partial domain adaptation, a major challenge is how to select source instances from the shared categories to ensure positive transfer for the target domain. To address this problem, we propose a domain adversarial reinforcement learning (DARL) framework to progressively select source instances to learn transferable features between domains by reducing the domain shift. Specifically, we employ a deep Q-learning to learn policies for an agent to make selection decisions by approximating the action-value function. Moreover, domain adversarial learning is introduced to learn a common feature subspace for the selected source instances and the target instances, and also to contribute to the reward calculation for the agent that is based on the relevance of the selected source instances with respect to the target domain. Extensive experiments on several benchmark data sets clearly demonstrate the superior performance of our proposed DARL over existing state-of-the-art methods for partial domain adaptation.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.3028078</identifier><identifier>PMID: 33064659</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Adversarial learning ; Benchmark testing ; Computer science ; Domains ; Feature extraction ; Games ; Generators ; Knowledge management ; Learning ; Learning systems ; Machine learning ; partial domain adaptation ; Reinforcement ; Reinforcement learning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2022-02, Vol.33 (2), p.539-553</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-99c3b4220932b1c907b5047051019e78380780572017ea474c9a1235f6b779153</citedby><cites>FETCH-LOGICAL-c395t-99c3b4220932b1c907b5047051019e78380780572017ea474c9a1235f6b779153</cites><orcidid>0000-0003-1626-2040 ; 0000-0002-2056-6947 ; 0000-0003-0788-0445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9228896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9228896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33064659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Wu, Xinxiao</creatorcontrib><creatorcontrib>Duan, Lixin</creatorcontrib><creatorcontrib>Gao, Shenghua</creatorcontrib><title>Domain Adversarial Reinforcement Learning for Partial Domain Adaptation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain (i.e., the target categories are a subset of the source ones), which relaxes the common assumption in traditional domain adaptation that the label space is fully shared across different domains. In this more general and practical scenario on partial domain adaptation, a major challenge is how to select source instances from the shared categories to ensure positive transfer for the target domain. To address this problem, we propose a domain adversarial reinforcement learning (DARL) framework to progressively select source instances to learn transferable features between domains by reducing the domain shift. Specifically, we employ a deep Q-learning to learn policies for an agent to make selection decisions by approximating the action-value function. Moreover, domain adversarial learning is introduced to learn a common feature subspace for the selected source instances and the target instances, and also to contribute to the reward calculation for the agent that is based on the relevance of the selected source instances with respect to the target domain. Extensive experiments on several benchmark data sets clearly demonstrate the superior performance of our proposed DARL over existing state-of-the-art methods for partial domain adaptation.</description><subject>Adaptation</subject><subject>Adversarial learning</subject><subject>Benchmark testing</subject><subject>Computer science</subject><subject>Domains</subject><subject>Feature extraction</subject><subject>Games</subject><subject>Generators</subject><subject>Knowledge management</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>partial domain adaptation</subject><subject>Reinforcement</subject><subject>Reinforcement learning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkF1LwzAUhoMobsz9AQUpeOPN5slJ83U5pk5hTNEJ3oW0S6VjbWfSCv57Ozd7YW4STp73cM5DyDmFMaWgb5aLxfx1jIAwZoAKpDoifaQCR8iUOu7e8r1HhiGsoT0CuIj1KekxBiIWXPfJ7LYqbF5Gk9WX88H63G6iF5eXWeVTV7iyjubO-jIvP6K2FD1bX--QLmW3ta3zqjwjJ5ndBDc83APydn-3nD6M5k-zx-lkPkqZ5vVI65QlMSJohglNNciEQyyBU6DaScV2iwCXCFQ6G8s41ZYi45lIpNSUswG53vfd-uqzcaE2RR5St9nY0lVNMBhzqrgEylr06h-6rhpfttMZFMiZ0FxhS-GeSn0VgneZ2fq8sP7bUDA70-bXtNmZNgfTbejy0LpJCrfqIn9eW-BiD-TOue5bIyqlBfsBoKN-og</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Jin</creator><creator>Wu, Xinxiao</creator><creator>Duan, Lixin</creator><creator>Gao, Shenghua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1626-2040</orcidid><orcidid>https://orcid.org/0000-0002-2056-6947</orcidid><orcidid>https://orcid.org/0000-0003-0788-0445</orcidid></search><sort><creationdate>20220201</creationdate><title>Domain Adversarial Reinforcement Learning for Partial Domain Adaptation</title><author>Chen, Jin ; Wu, Xinxiao ; Duan, Lixin ; Gao, Shenghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-99c3b4220932b1c907b5047051019e78380780572017ea474c9a1235f6b779153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Adversarial learning</topic><topic>Benchmark testing</topic><topic>Computer science</topic><topic>Domains</topic><topic>Feature extraction</topic><topic>Games</topic><topic>Generators</topic><topic>Knowledge management</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>partial domain adaptation</topic><topic>Reinforcement</topic><topic>Reinforcement learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Wu, Xinxiao</creatorcontrib><creatorcontrib>Duan, Lixin</creatorcontrib><creatorcontrib>Gao, Shenghua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jin</au><au>Wu, Xinxiao</au><au>Duan, Lixin</au><au>Gao, Shenghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain Adversarial Reinforcement Learning for Partial Domain Adaptation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>33</volume><issue>2</issue><spage>539</spage><epage>553</epage><pages>539-553</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain (i.e., the target categories are a subset of the source ones), which relaxes the common assumption in traditional domain adaptation that the label space is fully shared across different domains. In this more general and practical scenario on partial domain adaptation, a major challenge is how to select source instances from the shared categories to ensure positive transfer for the target domain. To address this problem, we propose a domain adversarial reinforcement learning (DARL) framework to progressively select source instances to learn transferable features between domains by reducing the domain shift. Specifically, we employ a deep Q-learning to learn policies for an agent to make selection decisions by approximating the action-value function. Moreover, domain adversarial learning is introduced to learn a common feature subspace for the selected source instances and the target instances, and also to contribute to the reward calculation for the agent that is based on the relevance of the selected source instances with respect to the target domain. Extensive experiments on several benchmark data sets clearly demonstrate the superior performance of our proposed DARL over existing state-of-the-art methods for partial domain adaptation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33064659</pmid><doi>10.1109/TNNLS.2020.3028078</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1626-2040</orcidid><orcidid>https://orcid.org/0000-0002-2056-6947</orcidid><orcidid>https://orcid.org/0000-0003-0788-0445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2022-02, Vol.33 (2), p.539-553
issn 2162-237X
2162-2388
language eng
recordid cdi_ieee_primary_9228896
source IEEE Electronic Library (IEL)
subjects Adaptation
Adversarial learning
Benchmark testing
Computer science
Domains
Feature extraction
Games
Generators
Knowledge management
Learning
Learning systems
Machine learning
partial domain adaptation
Reinforcement
Reinforcement learning
title Domain Adversarial Reinforcement Learning for Partial Domain Adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20Adversarial%20Reinforcement%20Learning%20for%20Partial%20Domain%20Adaptation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chen,%20Jin&rft.date=2022-02-01&rft.volume=33&rft.issue=2&rft.spage=539&rft.epage=553&rft.pages=539-553&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.3028078&rft_dat=%3Cproquest_RIE%3E2451857013%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625369582&rft_id=info:pmid/33064659&rft_ieee_id=9228896&rfr_iscdi=true