A Principal Curves-Based Method for Electronic Tongue Data Analysis
Electronic tongues are a type of sensor inspired in the biological recognition system, where sensorial and instrumental techniques are used to determine flavors or substances present in the samples analyzed. The sensor arrays used in electronic tongues are generally non-specific and are designed to...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-02, Vol.21 (4), p.4957-4965 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4965 |
---|---|
container_issue | 4 |
container_start_page | 4957 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Sousa, Luiz Paulo O. Fukushima, Katia L. Scagion, Vanessa P. Facure, Murilo H. M. Correa, Daniel S. Oliveira, Juliano E. Ferreira, Danton D. |
description | Electronic tongues are a type of sensor inspired in the biological recognition system, where sensorial and instrumental techniques are used to determine flavors or substances present in the samples analyzed. The sensor arrays used in electronic tongues are generally non-specific and are designed to provide global information about the solution's response. As a consequence, it usually becomes necessary to use data processing techniques that are capable of providing specific information from the samples under investigation. In this context, here we employed a Principal Curves based method to evaluate the experimental data obtained from an impedimetric electronic tongue used to evaluated distinct flavors enhancers of similar compostions. For the classification of concentrations, the best results were in the range of 88.02 to 91.15%, using electrode architectures E1 (Poly allylamine hydrochloride (PAH), reduced graphene oxide (rGO), polyaniline (PANI) and copper tetrasulfonated phthalocyanine (CuTsPc)) and E6 (PAH and CuTsPc). In the classification of substances, again the E1 architecture was highlighted, with 90.15% accuracy. These results shown that principal curves may be a promising technique for electronic tongues data analysis. |
doi_str_mv | 10.1109/JSEN.2020.3031737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9226523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9226523</ieee_id><sourcerecordid>2479887670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9c858b835253efdeec9414696133490fbb316c86d69df5e70e4573187e542f313</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Z5CRNcjnr_GJ-gBO8C116qh21nUkr7N-7suHVeS-e9-XwEHLO2YRzZq8e32bPE8EEmwADrkEfkBFXyiRcS3M4ZGCJBP1xTE5iXDHGrVZ6RLIpfQ1V46t1XtOsD78Yk-s8YkGfsPtqC1q2gc5q9F1om8rTRdt89khv8i6n0yavN7GKp-SozOuIZ_s7Ju-3s0V2n8xf7h6y6TzxwkKXWG-UWRpQQgGWBaK3ksvUphxAWlYul8BTb9IitUWpUDOUSgM3GpUUJXAYk8vd7jq0Pz3Gzq3aPmyfiE5IbY3RqWZbiu8oH9oYA5ZuHarvPGwcZ25w5QZXbnDl9q62nYtdp0LEf94KkSoB8AfEdWMm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479887670</pqid></control><display><type>article</type><title>A Principal Curves-Based Method for Electronic Tongue Data Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Sousa, Luiz Paulo O. ; Fukushima, Katia L. ; Scagion, Vanessa P. ; Facure, Murilo H. M. ; Correa, Daniel S. ; Oliveira, Juliano E. ; Ferreira, Danton D.</creator><creatorcontrib>Sousa, Luiz Paulo O. ; Fukushima, Katia L. ; Scagion, Vanessa P. ; Facure, Murilo H. M. ; Correa, Daniel S. ; Oliveira, Juliano E. ; Ferreira, Danton D.</creatorcontrib><description>Electronic tongues are a type of sensor inspired in the biological recognition system, where sensorial and instrumental techniques are used to determine flavors or substances present in the samples analyzed. The sensor arrays used in electronic tongues are generally non-specific and are designed to provide global information about the solution's response. As a consequence, it usually becomes necessary to use data processing techniques that are capable of providing specific information from the samples under investigation. In this context, here we employed a Principal Curves based method to evaluate the experimental data obtained from an impedimetric electronic tongue used to evaluated distinct flavors enhancers of similar compostions. For the classification of concentrations, the best results were in the range of 88.02 to 91.15%, using electrode architectures E1 (Poly allylamine hydrochloride (PAH), reduced graphene oxide (rGO), polyaniline (PANI) and copper tetrasulfonated phthalocyanine (CuTsPc)) and E6 (PAH and CuTsPc). In the classification of substances, again the E1 architecture was highlighted, with 90.15% accuracy. These results shown that principal curves may be a promising technique for electronic tongues data analysis.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3031737</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biosensors ; Classification ; Data analysis ; Data processing ; electronic tongue ; Electronic tongues ; Evaluation ; Flavors ; Graphene ; Pattern recognition ; Polyanilines ; Principal component analysis ; Principal curves ; Sensor arrays ; Tongue</subject><ispartof>IEEE sensors journal, 2021-02, Vol.21 (4), p.4957-4965</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9c858b835253efdeec9414696133490fbb316c86d69df5e70e4573187e542f313</citedby><cites>FETCH-LOGICAL-c293t-9c858b835253efdeec9414696133490fbb316c86d69df5e70e4573187e542f313</cites><orcidid>0000-0001-9570-8308 ; 0000-0002-4504-7721 ; 0000-0002-5592-0627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9226523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9226523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sousa, Luiz Paulo O.</creatorcontrib><creatorcontrib>Fukushima, Katia L.</creatorcontrib><creatorcontrib>Scagion, Vanessa P.</creatorcontrib><creatorcontrib>Facure, Murilo H. M.</creatorcontrib><creatorcontrib>Correa, Daniel S.</creatorcontrib><creatorcontrib>Oliveira, Juliano E.</creatorcontrib><creatorcontrib>Ferreira, Danton D.</creatorcontrib><title>A Principal Curves-Based Method for Electronic Tongue Data Analysis</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Electronic tongues are a type of sensor inspired in the biological recognition system, where sensorial and instrumental techniques are used to determine flavors or substances present in the samples analyzed. The sensor arrays used in electronic tongues are generally non-specific and are designed to provide global information about the solution's response. As a consequence, it usually becomes necessary to use data processing techniques that are capable of providing specific information from the samples under investigation. In this context, here we employed a Principal Curves based method to evaluate the experimental data obtained from an impedimetric electronic tongue used to evaluated distinct flavors enhancers of similar compostions. For the classification of concentrations, the best results were in the range of 88.02 to 91.15%, using electrode architectures E1 (Poly allylamine hydrochloride (PAH), reduced graphene oxide (rGO), polyaniline (PANI) and copper tetrasulfonated phthalocyanine (CuTsPc)) and E6 (PAH and CuTsPc). In the classification of substances, again the E1 architecture was highlighted, with 90.15% accuracy. These results shown that principal curves may be a promising technique for electronic tongues data analysis.</description><subject>Biosensors</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>electronic tongue</subject><subject>Electronic tongues</subject><subject>Evaluation</subject><subject>Flavors</subject><subject>Graphene</subject><subject>Pattern recognition</subject><subject>Polyanilines</subject><subject>Principal component analysis</subject><subject>Principal curves</subject><subject>Sensor arrays</subject><subject>Tongue</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Z5CRNcjnr_GJ-gBO8C116qh21nUkr7N-7suHVeS-e9-XwEHLO2YRzZq8e32bPE8EEmwADrkEfkBFXyiRcS3M4ZGCJBP1xTE5iXDHGrVZ6RLIpfQ1V46t1XtOsD78Yk-s8YkGfsPtqC1q2gc5q9F1om8rTRdt89khv8i6n0yavN7GKp-SozOuIZ_s7Ju-3s0V2n8xf7h6y6TzxwkKXWG-UWRpQQgGWBaK3ksvUphxAWlYul8BTb9IitUWpUDOUSgM3GpUUJXAYk8vd7jq0Pz3Gzq3aPmyfiE5IbY3RqWZbiu8oH9oYA5ZuHarvPGwcZ25w5QZXbnDl9q62nYtdp0LEf94KkSoB8AfEdWMm</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Sousa, Luiz Paulo O.</creator><creator>Fukushima, Katia L.</creator><creator>Scagion, Vanessa P.</creator><creator>Facure, Murilo H. M.</creator><creator>Correa, Daniel S.</creator><creator>Oliveira, Juliano E.</creator><creator>Ferreira, Danton D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9570-8308</orcidid><orcidid>https://orcid.org/0000-0002-4504-7721</orcidid><orcidid>https://orcid.org/0000-0002-5592-0627</orcidid></search><sort><creationdate>20210215</creationdate><title>A Principal Curves-Based Method for Electronic Tongue Data Analysis</title><author>Sousa, Luiz Paulo O. ; Fukushima, Katia L. ; Scagion, Vanessa P. ; Facure, Murilo H. M. ; Correa, Daniel S. ; Oliveira, Juliano E. ; Ferreira, Danton D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9c858b835253efdeec9414696133490fbb316c86d69df5e70e4573187e542f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biosensors</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>electronic tongue</topic><topic>Electronic tongues</topic><topic>Evaluation</topic><topic>Flavors</topic><topic>Graphene</topic><topic>Pattern recognition</topic><topic>Polyanilines</topic><topic>Principal component analysis</topic><topic>Principal curves</topic><topic>Sensor arrays</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa, Luiz Paulo O.</creatorcontrib><creatorcontrib>Fukushima, Katia L.</creatorcontrib><creatorcontrib>Scagion, Vanessa P.</creatorcontrib><creatorcontrib>Facure, Murilo H. M.</creatorcontrib><creatorcontrib>Correa, Daniel S.</creatorcontrib><creatorcontrib>Oliveira, Juliano E.</creatorcontrib><creatorcontrib>Ferreira, Danton D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sousa, Luiz Paulo O.</au><au>Fukushima, Katia L.</au><au>Scagion, Vanessa P.</au><au>Facure, Murilo H. M.</au><au>Correa, Daniel S.</au><au>Oliveira, Juliano E.</au><au>Ferreira, Danton D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Principal Curves-Based Method for Electronic Tongue Data Analysis</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-02-15</date><risdate>2021</risdate><volume>21</volume><issue>4</issue><spage>4957</spage><epage>4965</epage><pages>4957-4965</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Electronic tongues are a type of sensor inspired in the biological recognition system, where sensorial and instrumental techniques are used to determine flavors or substances present in the samples analyzed. The sensor arrays used in electronic tongues are generally non-specific and are designed to provide global information about the solution's response. As a consequence, it usually becomes necessary to use data processing techniques that are capable of providing specific information from the samples under investigation. In this context, here we employed a Principal Curves based method to evaluate the experimental data obtained from an impedimetric electronic tongue used to evaluated distinct flavors enhancers of similar compostions. For the classification of concentrations, the best results were in the range of 88.02 to 91.15%, using electrode architectures E1 (Poly allylamine hydrochloride (PAH), reduced graphene oxide (rGO), polyaniline (PANI) and copper tetrasulfonated phthalocyanine (CuTsPc)) and E6 (PAH and CuTsPc). In the classification of substances, again the E1 architecture was highlighted, with 90.15% accuracy. These results shown that principal curves may be a promising technique for electronic tongues data analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3031737</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9570-8308</orcidid><orcidid>https://orcid.org/0000-0002-4504-7721</orcidid><orcidid>https://orcid.org/0000-0002-5592-0627</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-02, Vol.21 (4), p.4957-4965 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9226523 |
source | IEEE Electronic Library (IEL) |
subjects | Biosensors Classification Data analysis Data processing electronic tongue Electronic tongues Evaluation Flavors Graphene Pattern recognition Polyanilines Principal component analysis Principal curves Sensor arrays Tongue |
title | A Principal Curves-Based Method for Electronic Tongue Data Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Principal%20Curves-Based%20Method%20for%20Electronic%20Tongue%20Data%20Analysis&rft.jtitle=IEEE%20sensors%20journal&rft.au=Sousa,%20Luiz%20Paulo%20O.&rft.date=2021-02-15&rft.volume=21&rft.issue=4&rft.spage=4957&rft.epage=4965&rft.pages=4957-4965&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3031737&rft_dat=%3Cproquest_RIE%3E2479887670%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479887670&rft_id=info:pmid/&rft_ieee_id=9226523&rfr_iscdi=true |