Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System
In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmissio...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.189163-189178 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189178 |
---|---|
container_issue | |
container_start_page | 189163 |
container_title | IEEE access |
container_volume | 8 |
creator | Tebe, Parfait Ifede Ntiamoah-Sarpong, Kwadwo Tian, Wenhong Li, Jian Huang, Yongjun Wen, Guangjun |
description | In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmission in the uplink scenario and a hospital unit as the receiving site in the downlink scenario. We propose and model a NOMA slicing system where the medical data are categorized and assigned to two different slices based on 5G services. That is, 4K video from patients is assigned to an enhanced mobile broadband (eMBB) NOMA slice in both uplink and downlink, and all other medical data are assigned to an ultra-reliable and low latency communication (uRLLC) NOMA slice also in both uplink and downlink. Based on the system model and principles of NOMA, we formulate and use a joint power allocation optimization technique under users' minimum rate requirements and transmission power constraints, and successive interference cancellation (SIC) to maximize the medical data throughput as well as the system sum-throughput in each slice in both uplink and downlink. Our results show that, with the optimal power allocation technique, high throughput can be achieved for the 4K video and other medical data in the eMBB NOMA slice and uRLLC NOMA slice, respectively, but other users transmitting and receiving ordinary data in the slices will see their throughput decrease. Hence, in the interest of fairness for all users, we use truncated channel inversion power allocation in the downlink to prevent the decrease of the throughput of those users regardless of their channel conditions. |
doi_str_mv | 10.1109/ACCESS.2020.3031306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9224831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9224831</ieee_id><doaj_id>oai_doaj_org_article_96891a87729c4717b276e600abe4e135</doaj_id><sourcerecordid>2456529392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-df55adbba713be5bcf9bcc5fca3ee35adca075006fea1a677258a9bf389de6823</originalsourceid><addsrcrecordid>eNpNUU1P4zAQjVYggbr8Ai6W9pzij9iJj1VhAYnCoXC2Js6k624aB9vVin-_7gahncuM3rz3RppXFNeMLhmj-ma1Xt9tt0tOOV0KKpig6ltxyZnSpZBCnf03XxRXMe5priZDsr4sprfoxh2R9-QZ0x8ffpPt4OwJgrEjz34sX0L65Xd-hIFsjkNy04BkZS3GSJInrwHGeHCJbLBzNnNuIQFxIwGy8a3L3AcfJ5fyZvsREx6-F-c9DBGvPvuiePt597p-KJ9e7h_Xq6fSVrRJZddLCV3bQs1Ei7K1vW6tlb0FgSjyygKtJaWqR2Cg6prLBnTbi0Z3qBouFsXj7Nt52JspuAOED-PBmX-ADzsDITk7oNGq0Qya7KFtVbO65bVCRSm0WCHLf1sUP2avKfj3I8Zk9v4Y8kei4ZVUkmuhTxfFzLLBxxiw_7rKqDklZeakzCkp85lUVl3PKoeIXwrNedVkwl-ksY8m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456529392</pqid></control><display><type>article</type><title>Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tebe, Parfait Ifede ; Ntiamoah-Sarpong, Kwadwo ; Tian, Wenhong ; Li, Jian ; Huang, Yongjun ; Wen, Guangjun</creator><creatorcontrib>Tebe, Parfait Ifede ; Ntiamoah-Sarpong, Kwadwo ; Tian, Wenhong ; Li, Jian ; Huang, Yongjun ; Wen, Guangjun</creatorcontrib><description>In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmission in the uplink scenario and a hospital unit as the receiving site in the downlink scenario. We propose and model a NOMA slicing system where the medical data are categorized and assigned to two different slices based on 5G services. That is, 4K video from patients is assigned to an enhanced mobile broadband (eMBB) NOMA slice in both uplink and downlink, and all other medical data are assigned to an ultra-reliable and low latency communication (uRLLC) NOMA slice also in both uplink and downlink. Based on the system model and principles of NOMA, we formulate and use a joint power allocation optimization technique under users' minimum rate requirements and transmission power constraints, and successive interference cancellation (SIC) to maximize the medical data throughput as well as the system sum-throughput in each slice in both uplink and downlink. Our results show that, with the optimal power allocation technique, high throughput can be achieved for the 4K video and other medical data in the eMBB NOMA slice and uRLLC NOMA slice, respectively, but other users transmitting and receiving ordinary data in the slices will see their throughput decrease. Hence, in the interest of fairness for all users, we use truncated channel inversion power allocation in the downlink to prevent the decrease of the throughput of those users regardless of their channel conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3031306</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G cellular network ; 5G mobile communication ; Broadband ; Cellular communication ; Data transmission ; Downlink ; Downlinking ; Hospital systems ; Hospitals ; Mobile computing ; Network latency ; Network slicing ; NOMA ; non-orthogonal multiple access (NOMA) ; Nonorthogonal multiple access ; Optimization ; Optimization techniques ; power allocation ; Receiving ; Throughput ; throughput maximization ; Ultra reliable low latency communication ; User requirements ; Wireless networks</subject><ispartof>IEEE access, 2020, Vol.8, p.189163-189178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-df55adbba713be5bcf9bcc5fca3ee35adca075006fea1a677258a9bf389de6823</citedby><cites>FETCH-LOGICAL-c408t-df55adbba713be5bcf9bcc5fca3ee35adca075006fea1a677258a9bf389de6823</cites><orcidid>0000-0002-4291-2193 ; 0000-0003-4576-3039 ; 0000-0002-6715-3357 ; 0000-0002-7246-669X ; 0000-0002-5551-9796 ; 0000-0002-5069-6451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9224831$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Tebe, Parfait Ifede</creatorcontrib><creatorcontrib>Ntiamoah-Sarpong, Kwadwo</creatorcontrib><creatorcontrib>Tian, Wenhong</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Huang, Yongjun</creatorcontrib><creatorcontrib>Wen, Guangjun</creatorcontrib><title>Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmission in the uplink scenario and a hospital unit as the receiving site in the downlink scenario. We propose and model a NOMA slicing system where the medical data are categorized and assigned to two different slices based on 5G services. That is, 4K video from patients is assigned to an enhanced mobile broadband (eMBB) NOMA slice in both uplink and downlink, and all other medical data are assigned to an ultra-reliable and low latency communication (uRLLC) NOMA slice also in both uplink and downlink. Based on the system model and principles of NOMA, we formulate and use a joint power allocation optimization technique under users' minimum rate requirements and transmission power constraints, and successive interference cancellation (SIC) to maximize the medical data throughput as well as the system sum-throughput in each slice in both uplink and downlink. Our results show that, with the optimal power allocation technique, high throughput can be achieved for the 4K video and other medical data in the eMBB NOMA slice and uRLLC NOMA slice, respectively, but other users transmitting and receiving ordinary data in the slices will see their throughput decrease. Hence, in the interest of fairness for all users, we use truncated channel inversion power allocation in the downlink to prevent the decrease of the throughput of those users regardless of their channel conditions.</description><subject>5G cellular network</subject><subject>5G mobile communication</subject><subject>Broadband</subject><subject>Cellular communication</subject><subject>Data transmission</subject><subject>Downlink</subject><subject>Downlinking</subject><subject>Hospital systems</subject><subject>Hospitals</subject><subject>Mobile computing</subject><subject>Network latency</subject><subject>Network slicing</subject><subject>NOMA</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>power allocation</subject><subject>Receiving</subject><subject>Throughput</subject><subject>throughput maximization</subject><subject>Ultra reliable low latency communication</subject><subject>User requirements</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P4zAQjVYggbr8Ai6W9pzij9iJj1VhAYnCoXC2Js6k624aB9vVin-_7gahncuM3rz3RppXFNeMLhmj-ma1Xt9tt0tOOV0KKpig6ltxyZnSpZBCnf03XxRXMe5priZDsr4sprfoxh2R9-QZ0x8ffpPt4OwJgrEjz34sX0L65Xd-hIFsjkNy04BkZS3GSJInrwHGeHCJbLBzNnNuIQFxIwGy8a3L3AcfJ5fyZvsREx6-F-c9DBGvPvuiePt597p-KJ9e7h_Xq6fSVrRJZddLCV3bQs1Ei7K1vW6tlb0FgSjyygKtJaWqR2Cg6prLBnTbi0Z3qBouFsXj7Nt52JspuAOED-PBmX-ADzsDITk7oNGq0Qya7KFtVbO65bVCRSm0WCHLf1sUP2avKfj3I8Zk9v4Y8kei4ZVUkmuhTxfFzLLBxxiw_7rKqDklZeakzCkp85lUVl3PKoeIXwrNedVkwl-ksY8m</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tebe, Parfait Ifede</creator><creator>Ntiamoah-Sarpong, Kwadwo</creator><creator>Tian, Wenhong</creator><creator>Li, Jian</creator><creator>Huang, Yongjun</creator><creator>Wen, Guangjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4291-2193</orcidid><orcidid>https://orcid.org/0000-0003-4576-3039</orcidid><orcidid>https://orcid.org/0000-0002-6715-3357</orcidid><orcidid>https://orcid.org/0000-0002-7246-669X</orcidid><orcidid>https://orcid.org/0000-0002-5551-9796</orcidid><orcidid>https://orcid.org/0000-0002-5069-6451</orcidid></search><sort><creationdate>2020</creationdate><title>Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System</title><author>Tebe, Parfait Ifede ; Ntiamoah-Sarpong, Kwadwo ; Tian, Wenhong ; Li, Jian ; Huang, Yongjun ; Wen, Guangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-df55adbba713be5bcf9bcc5fca3ee35adca075006fea1a677258a9bf389de6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G cellular network</topic><topic>5G mobile communication</topic><topic>Broadband</topic><topic>Cellular communication</topic><topic>Data transmission</topic><topic>Downlink</topic><topic>Downlinking</topic><topic>Hospital systems</topic><topic>Hospitals</topic><topic>Mobile computing</topic><topic>Network latency</topic><topic>Network slicing</topic><topic>NOMA</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>power allocation</topic><topic>Receiving</topic><topic>Throughput</topic><topic>throughput maximization</topic><topic>Ultra reliable low latency communication</topic><topic>User requirements</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tebe, Parfait Ifede</creatorcontrib><creatorcontrib>Ntiamoah-Sarpong, Kwadwo</creatorcontrib><creatorcontrib>Tian, Wenhong</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Huang, Yongjun</creatorcontrib><creatorcontrib>Wen, Guangjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tebe, Parfait Ifede</au><au>Ntiamoah-Sarpong, Kwadwo</au><au>Tian, Wenhong</au><au>Li, Jian</au><au>Huang, Yongjun</au><au>Wen, Guangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>189163</spage><epage>189178</epage><pages>189163-189178</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmission in the uplink scenario and a hospital unit as the receiving site in the downlink scenario. We propose and model a NOMA slicing system where the medical data are categorized and assigned to two different slices based on 5G services. That is, 4K video from patients is assigned to an enhanced mobile broadband (eMBB) NOMA slice in both uplink and downlink, and all other medical data are assigned to an ultra-reliable and low latency communication (uRLLC) NOMA slice also in both uplink and downlink. Based on the system model and principles of NOMA, we formulate and use a joint power allocation optimization technique under users' minimum rate requirements and transmission power constraints, and successive interference cancellation (SIC) to maximize the medical data throughput as well as the system sum-throughput in each slice in both uplink and downlink. Our results show that, with the optimal power allocation technique, high throughput can be achieved for the 4K video and other medical data in the eMBB NOMA slice and uRLLC NOMA slice, respectively, but other users transmitting and receiving ordinary data in the slices will see their throughput decrease. Hence, in the interest of fairness for all users, we use truncated channel inversion power allocation in the downlink to prevent the decrease of the throughput of those users regardless of their channel conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3031306</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4291-2193</orcidid><orcidid>https://orcid.org/0000-0003-4576-3039</orcidid><orcidid>https://orcid.org/0000-0002-6715-3357</orcidid><orcidid>https://orcid.org/0000-0002-7246-669X</orcidid><orcidid>https://orcid.org/0000-0002-5551-9796</orcidid><orcidid>https://orcid.org/0000-0002-5069-6451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.189163-189178 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9224831 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 5G cellular network 5G mobile communication Broadband Cellular communication Data transmission Downlink Downlinking Hospital systems Hospitals Mobile computing Network latency Network slicing NOMA non-orthogonal multiple access (NOMA) Nonorthogonal multiple access Optimization Optimization techniques power allocation Receiving Throughput throughput maximization Ultra reliable low latency communication User requirements Wireless networks |
title | Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%205G%20Network%20Slicing%20and%20Non-Orthogonal%20Multiple%20Access%20to%20Transmit%20Medical%20Data%20in%20a%20Mobile%20Hospital%20System&rft.jtitle=IEEE%20access&rft.au=Tebe,%20Parfait%20Ifede&rft.date=2020&rft.volume=8&rft.spage=189163&rft.epage=189178&rft.pages=189163-189178&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3031306&rft_dat=%3Cproquest_ieee_%3E2456529392%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456529392&rft_id=info:pmid/&rft_ieee_id=9224831&rft_doaj_id=oai_doaj_org_article_96891a87729c4717b276e600abe4e135&rfr_iscdi=true |