Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System

In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmissio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.189163-189178
Hauptverfasser: Tebe, Parfait Ifede, Ntiamoah-Sarpong, Kwadwo, Tian, Wenhong, Li, Jian, Huang, Yongjun, Wen, Guangjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189178
container_issue
container_start_page 189163
container_title IEEE access
container_volume 8
creator Tebe, Parfait Ifede
Ntiamoah-Sarpong, Kwadwo
Tian, Wenhong
Li, Jian
Huang, Yongjun
Wen, Guangjun
description In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmission in the uplink scenario and a hospital unit as the receiving site in the downlink scenario. We propose and model a NOMA slicing system where the medical data are categorized and assigned to two different slices based on 5G services. That is, 4K video from patients is assigned to an enhanced mobile broadband (eMBB) NOMA slice in both uplink and downlink, and all other medical data are assigned to an ultra-reliable and low latency communication (uRLLC) NOMA slice also in both uplink and downlink. Based on the system model and principles of NOMA, we formulate and use a joint power allocation optimization technique under users' minimum rate requirements and transmission power constraints, and successive interference cancellation (SIC) to maximize the medical data throughput as well as the system sum-throughput in each slice in both uplink and downlink. Our results show that, with the optimal power allocation technique, high throughput can be achieved for the 4K video and other medical data in the eMBB NOMA slice and uRLLC NOMA slice, respectively, but other users transmitting and receiving ordinary data in the slices will see their throughput decrease. Hence, in the interest of fairness for all users, we use truncated channel inversion power allocation in the downlink to prevent the decrease of the throughput of those users regardless of their channel conditions.
doi_str_mv 10.1109/ACCESS.2020.3031306
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9224831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9224831</ieee_id><doaj_id>oai_doaj_org_article_96891a87729c4717b276e600abe4e135</doaj_id><sourcerecordid>2456529392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-df55adbba713be5bcf9bcc5fca3ee35adca075006fea1a677258a9bf389de6823</originalsourceid><addsrcrecordid>eNpNUU1P4zAQjVYggbr8Ai6W9pzij9iJj1VhAYnCoXC2Js6k624aB9vVin-_7gahncuM3rz3RppXFNeMLhmj-ma1Xt9tt0tOOV0KKpig6ltxyZnSpZBCnf03XxRXMe5priZDsr4sprfoxh2R9-QZ0x8ffpPt4OwJgrEjz34sX0L65Xd-hIFsjkNy04BkZS3GSJInrwHGeHCJbLBzNnNuIQFxIwGy8a3L3AcfJ5fyZvsREx6-F-c9DBGvPvuiePt597p-KJ9e7h_Xq6fSVrRJZddLCV3bQs1Ei7K1vW6tlb0FgSjyygKtJaWqR2Cg6prLBnTbi0Z3qBouFsXj7Nt52JspuAOED-PBmX-ADzsDITk7oNGq0Qya7KFtVbO65bVCRSm0WCHLf1sUP2avKfj3I8Zk9v4Y8kei4ZVUkmuhTxfFzLLBxxiw_7rKqDklZeakzCkp85lUVl3PKoeIXwrNedVkwl-ksY8m</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456529392</pqid></control><display><type>article</type><title>Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tebe, Parfait Ifede ; Ntiamoah-Sarpong, Kwadwo ; Tian, Wenhong ; Li, Jian ; Huang, Yongjun ; Wen, Guangjun</creator><creatorcontrib>Tebe, Parfait Ifede ; Ntiamoah-Sarpong, Kwadwo ; Tian, Wenhong ; Li, Jian ; Huang, Yongjun ; Wen, Guangjun</creatorcontrib><description>In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmission in the uplink scenario and a hospital unit as the receiving site in the downlink scenario. We propose and model a NOMA slicing system where the medical data are categorized and assigned to two different slices based on 5G services. That is, 4K video from patients is assigned to an enhanced mobile broadband (eMBB) NOMA slice in both uplink and downlink, and all other medical data are assigned to an ultra-reliable and low latency communication (uRLLC) NOMA slice also in both uplink and downlink. Based on the system model and principles of NOMA, we formulate and use a joint power allocation optimization technique under users' minimum rate requirements and transmission power constraints, and successive interference cancellation (SIC) to maximize the medical data throughput as well as the system sum-throughput in each slice in both uplink and downlink. Our results show that, with the optimal power allocation technique, high throughput can be achieved for the 4K video and other medical data in the eMBB NOMA slice and uRLLC NOMA slice, respectively, but other users transmitting and receiving ordinary data in the slices will see their throughput decrease. Hence, in the interest of fairness for all users, we use truncated channel inversion power allocation in the downlink to prevent the decrease of the throughput of those users regardless of their channel conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3031306</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G cellular network ; 5G mobile communication ; Broadband ; Cellular communication ; Data transmission ; Downlink ; Downlinking ; Hospital systems ; Hospitals ; Mobile computing ; Network latency ; Network slicing ; NOMA ; non-orthogonal multiple access (NOMA) ; Nonorthogonal multiple access ; Optimization ; Optimization techniques ; power allocation ; Receiving ; Throughput ; throughput maximization ; Ultra reliable low latency communication ; User requirements ; Wireless networks</subject><ispartof>IEEE access, 2020, Vol.8, p.189163-189178</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-df55adbba713be5bcf9bcc5fca3ee35adca075006fea1a677258a9bf389de6823</citedby><cites>FETCH-LOGICAL-c408t-df55adbba713be5bcf9bcc5fca3ee35adca075006fea1a677258a9bf389de6823</cites><orcidid>0000-0002-4291-2193 ; 0000-0003-4576-3039 ; 0000-0002-6715-3357 ; 0000-0002-7246-669X ; 0000-0002-5551-9796 ; 0000-0002-5069-6451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9224831$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Tebe, Parfait Ifede</creatorcontrib><creatorcontrib>Ntiamoah-Sarpong, Kwadwo</creatorcontrib><creatorcontrib>Tian, Wenhong</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Huang, Yongjun</creatorcontrib><creatorcontrib>Wen, Guangjun</creatorcontrib><title>Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmission in the uplink scenario and a hospital unit as the receiving site in the downlink scenario. We propose and model a NOMA slicing system where the medical data are categorized and assigned to two different slices based on 5G services. That is, 4K video from patients is assigned to an enhanced mobile broadband (eMBB) NOMA slice in both uplink and downlink, and all other medical data are assigned to an ultra-reliable and low latency communication (uRLLC) NOMA slice also in both uplink and downlink. Based on the system model and principles of NOMA, we formulate and use a joint power allocation optimization technique under users' minimum rate requirements and transmission power constraints, and successive interference cancellation (SIC) to maximize the medical data throughput as well as the system sum-throughput in each slice in both uplink and downlink. Our results show that, with the optimal power allocation technique, high throughput can be achieved for the 4K video and other medical data in the eMBB NOMA slice and uRLLC NOMA slice, respectively, but other users transmitting and receiving ordinary data in the slices will see their throughput decrease. Hence, in the interest of fairness for all users, we use truncated channel inversion power allocation in the downlink to prevent the decrease of the throughput of those users regardless of their channel conditions.</description><subject>5G cellular network</subject><subject>5G mobile communication</subject><subject>Broadband</subject><subject>Cellular communication</subject><subject>Data transmission</subject><subject>Downlink</subject><subject>Downlinking</subject><subject>Hospital systems</subject><subject>Hospitals</subject><subject>Mobile computing</subject><subject>Network latency</subject><subject>Network slicing</subject><subject>NOMA</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>power allocation</subject><subject>Receiving</subject><subject>Throughput</subject><subject>throughput maximization</subject><subject>Ultra reliable low latency communication</subject><subject>User requirements</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P4zAQjVYggbr8Ai6W9pzij9iJj1VhAYnCoXC2Js6k624aB9vVin-_7gahncuM3rz3RppXFNeMLhmj-ma1Xt9tt0tOOV0KKpig6ltxyZnSpZBCnf03XxRXMe5priZDsr4sprfoxh2R9-QZ0x8ffpPt4OwJgrEjz34sX0L65Xd-hIFsjkNy04BkZS3GSJInrwHGeHCJbLBzNnNuIQFxIwGy8a3L3AcfJ5fyZvsREx6-F-c9DBGvPvuiePt597p-KJ9e7h_Xq6fSVrRJZddLCV3bQs1Ei7K1vW6tlb0FgSjyygKtJaWqR2Cg6prLBnTbi0Z3qBouFsXj7Nt52JspuAOED-PBmX-ADzsDITk7oNGq0Qya7KFtVbO65bVCRSm0WCHLf1sUP2avKfj3I8Zk9v4Y8kei4ZVUkmuhTxfFzLLBxxiw_7rKqDklZeakzCkp85lUVl3PKoeIXwrNedVkwl-ksY8m</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tebe, Parfait Ifede</creator><creator>Ntiamoah-Sarpong, Kwadwo</creator><creator>Tian, Wenhong</creator><creator>Li, Jian</creator><creator>Huang, Yongjun</creator><creator>Wen, Guangjun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4291-2193</orcidid><orcidid>https://orcid.org/0000-0003-4576-3039</orcidid><orcidid>https://orcid.org/0000-0002-6715-3357</orcidid><orcidid>https://orcid.org/0000-0002-7246-669X</orcidid><orcidid>https://orcid.org/0000-0002-5551-9796</orcidid><orcidid>https://orcid.org/0000-0002-5069-6451</orcidid></search><sort><creationdate>2020</creationdate><title>Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System</title><author>Tebe, Parfait Ifede ; Ntiamoah-Sarpong, Kwadwo ; Tian, Wenhong ; Li, Jian ; Huang, Yongjun ; Wen, Guangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-df55adbba713be5bcf9bcc5fca3ee35adca075006fea1a677258a9bf389de6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G cellular network</topic><topic>5G mobile communication</topic><topic>Broadband</topic><topic>Cellular communication</topic><topic>Data transmission</topic><topic>Downlink</topic><topic>Downlinking</topic><topic>Hospital systems</topic><topic>Hospitals</topic><topic>Mobile computing</topic><topic>Network latency</topic><topic>Network slicing</topic><topic>NOMA</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>power allocation</topic><topic>Receiving</topic><topic>Throughput</topic><topic>throughput maximization</topic><topic>Ultra reliable low latency communication</topic><topic>User requirements</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tebe, Parfait Ifede</creatorcontrib><creatorcontrib>Ntiamoah-Sarpong, Kwadwo</creatorcontrib><creatorcontrib>Tian, Wenhong</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Huang, Yongjun</creatorcontrib><creatorcontrib>Wen, Guangjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tebe, Parfait Ifede</au><au>Ntiamoah-Sarpong, Kwadwo</au><au>Tian, Wenhong</au><au>Li, Jian</au><au>Huang, Yongjun</au><au>Wen, Guangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>189163</spage><epage>189178</epage><pages>189163-189178</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this work, we propose a novel approach combining 5G network slicing and non-orthogonal multiple access (NOMA) to transmit medical data in a mobile hospital system. We consider both the uplink and downlink of a 5G cellular network with an ambulance bus located at a remote site for data transmission in the uplink scenario and a hospital unit as the receiving site in the downlink scenario. We propose and model a NOMA slicing system where the medical data are categorized and assigned to two different slices based on 5G services. That is, 4K video from patients is assigned to an enhanced mobile broadband (eMBB) NOMA slice in both uplink and downlink, and all other medical data are assigned to an ultra-reliable and low latency communication (uRLLC) NOMA slice also in both uplink and downlink. Based on the system model and principles of NOMA, we formulate and use a joint power allocation optimization technique under users' minimum rate requirements and transmission power constraints, and successive interference cancellation (SIC) to maximize the medical data throughput as well as the system sum-throughput in each slice in both uplink and downlink. Our results show that, with the optimal power allocation technique, high throughput can be achieved for the 4K video and other medical data in the eMBB NOMA slice and uRLLC NOMA slice, respectively, but other users transmitting and receiving ordinary data in the slices will see their throughput decrease. Hence, in the interest of fairness for all users, we use truncated channel inversion power allocation in the downlink to prevent the decrease of the throughput of those users regardless of their channel conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3031306</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4291-2193</orcidid><orcidid>https://orcid.org/0000-0003-4576-3039</orcidid><orcidid>https://orcid.org/0000-0002-6715-3357</orcidid><orcidid>https://orcid.org/0000-0002-7246-669X</orcidid><orcidid>https://orcid.org/0000-0002-5551-9796</orcidid><orcidid>https://orcid.org/0000-0002-5069-6451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.189163-189178
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9224831
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 5G cellular network
5G mobile communication
Broadband
Cellular communication
Data transmission
Downlink
Downlinking
Hospital systems
Hospitals
Mobile computing
Network latency
Network slicing
NOMA
non-orthogonal multiple access (NOMA)
Nonorthogonal multiple access
Optimization
Optimization techniques
power allocation
Receiving
Throughput
throughput maximization
Ultra reliable low latency communication
User requirements
Wireless networks
title Using 5G Network Slicing and Non-Orthogonal Multiple Access to Transmit Medical Data in a Mobile Hospital System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%205G%20Network%20Slicing%20and%20Non-Orthogonal%20Multiple%20Access%20to%20Transmit%20Medical%20Data%20in%20a%20Mobile%20Hospital%20System&rft.jtitle=IEEE%20access&rft.au=Tebe,%20Parfait%20Ifede&rft.date=2020&rft.volume=8&rft.spage=189163&rft.epage=189178&rft.pages=189163-189178&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3031306&rft_dat=%3Cproquest_ieee_%3E2456529392%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456529392&rft_id=info:pmid/&rft_ieee_id=9224831&rft_doaj_id=oai_doaj_org_article_96891a87729c4717b276e600abe4e135&rfr_iscdi=true