Remote Control: A Simple Deadlock Avoidance Scheme for Modular Systems-on-Chip
Ever increasing performance demand and shrinking in the transistor size together result in complex and dense packing in large chips. That motivates designers to opt for many small specialized hardware modules in a chip to extract maximum performance benefits with relatively lower complexity and cost...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2021-11, Vol.70 (11), p.1928-1941 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1941 |
---|---|
container_issue | 11 |
container_start_page | 1928 |
container_title | IEEE transactions on computers |
container_volume | 70 |
creator | Majumder, Pritam Kim, Sungkeun Huang, Jiayi Yum, Ki Hwan Kim, Eun Jung |
description | Ever increasing performance demand and shrinking in the transistor size together result in complex and dense packing in large chips. That motivates designers to opt for many small specialized hardware modules in a chip to extract maximum performance benefits with relatively lower complexity and cost. These altogether opens up new directions for heterogeneous modular System-on-Chip (SoC) research, where a large system is built by assembling small independently designed chiplets (small chips). We focus on the communication aspect of such SoCs, especially the newly observed deadlock among chiplets. Even though deadlock is a classic problem in networks and many solutions are available, the modular SoC design demands customized solutions that preserves the design flexibility for chiplet designers. We propose Remote Control (RC) , a simple routing oblivious deadlock avoidance scheme based on selective injection-control mechanism. Along with guarantee on deadlock freedom, RC aims to provide a methodology to make each independently designed chiplet seamlessly integrate in any modular SoCs. We achieve up to 56.34% throughput and 15.49% zero load latency improvements on synthetic traffic and up to 20% speedup on real workloads taken from vast range of benchmark suites, over the state-of-the-art turn restriction based technique applied in the modular SoC domain. |
doi_str_mv | 10.1109/TC.2020.3029682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9220969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9220969</ieee_id><sourcerecordid>2580099308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-2438f8620f451bb6a1b6f3d95730bd6fbe928dd978bb0cde591b2533b2aac9ca3</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqUwM7BYYk57bdepzVaFp1RAomW2_IqaksTBTpH67wlqxXSW79x79CF0TWBCCMjpuphQoDBhQGUu6AkaEc7nmZQ8P0UjACIyyWZwji5S2gJATkGO0NuHb0LvcRHaPob6Di_wqmq62uN7r10d7Bde_ITK6dZ6vLIb33hchohfg9vVOuLVPvW-SVlos2JTdZforNR18lfHHKPPx4d18Zwt359eisUys4xBn9EZE6UYFpQzTozJNTF5yZzkcwbG5aXxkgrn5FwYA9Z5LomhnDFDtbbSajZGt4e7XQzfO596tQ272A4vFeUCQEoGYqCmB8rGkFL0pepi1ei4VwTUnzS1LtSfNHWUNjRuDo3Ke_9PSzq4yiX7BZkMZvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580099308</pqid></control><display><type>article</type><title>Remote Control: A Simple Deadlock Avoidance Scheme for Modular Systems-on-Chip</title><source>IEEE Electronic Library (IEL)</source><creator>Majumder, Pritam ; Kim, Sungkeun ; Huang, Jiayi ; Yum, Ki Hwan ; Kim, Eun Jung</creator><creatorcontrib>Majumder, Pritam ; Kim, Sungkeun ; Huang, Jiayi ; Yum, Ki Hwan ; Kim, Eun Jung</creatorcontrib><description>Ever increasing performance demand and shrinking in the transistor size together result in complex and dense packing in large chips. That motivates designers to opt for many small specialized hardware modules in a chip to extract maximum performance benefits with relatively lower complexity and cost. These altogether opens up new directions for heterogeneous modular System-on-Chip (SoC) research, where a large system is built by assembling small independently designed chiplets (small chips). We focus on the communication aspect of such SoCs, especially the newly observed deadlock among chiplets. Even though deadlock is a classic problem in networks and many solutions are available, the modular SoC design demands customized solutions that preserves the design flexibility for chiplet designers. We propose Remote Control (RC) , a simple routing oblivious deadlock avoidance scheme based on selective injection-control mechanism. Along with guarantee on deadlock freedom, RC aims to provide a methodology to make each independently designed chiplet seamlessly integrate in any modular SoCs. We achieve up to 56.34% throughput and 15.49% zero load latency improvements on synthetic traffic and up to 20% speedup on real workloads taken from vast range of benchmark suites, over the state-of-the-art turn restriction based technique applied in the modular SoC domain.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2020.3029682</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automobiles ; Avoidance ; boundary router ; Complexity ; Design ; Designers ; inbound and outbound traffic ; injection control ; Modular design ; modular SoC ; Modular systems ; Network deadlock ; Remote control ; Roads ; Routing ; Silicon ; System on chip ; System recovery ; Traffic speed ; Transistors ; Urban areas</subject><ispartof>IEEE transactions on computers, 2021-11, Vol.70 (11), p.1928-1941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-2438f8620f451bb6a1b6f3d95730bd6fbe928dd978bb0cde591b2533b2aac9ca3</citedby><cites>FETCH-LOGICAL-c330t-2438f8620f451bb6a1b6f3d95730bd6fbe928dd978bb0cde591b2533b2aac9ca3</cites><orcidid>0000-0002-0313-7526 ; 0000-0003-0855-2443 ; 0000-0003-4011-6668 ; 0000-0002-3130-1434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9220969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9220969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Majumder, Pritam</creatorcontrib><creatorcontrib>Kim, Sungkeun</creatorcontrib><creatorcontrib>Huang, Jiayi</creatorcontrib><creatorcontrib>Yum, Ki Hwan</creatorcontrib><creatorcontrib>Kim, Eun Jung</creatorcontrib><title>Remote Control: A Simple Deadlock Avoidance Scheme for Modular Systems-on-Chip</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Ever increasing performance demand and shrinking in the transistor size together result in complex and dense packing in large chips. That motivates designers to opt for many small specialized hardware modules in a chip to extract maximum performance benefits with relatively lower complexity and cost. These altogether opens up new directions for heterogeneous modular System-on-Chip (SoC) research, where a large system is built by assembling small independently designed chiplets (small chips). We focus on the communication aspect of such SoCs, especially the newly observed deadlock among chiplets. Even though deadlock is a classic problem in networks and many solutions are available, the modular SoC design demands customized solutions that preserves the design flexibility for chiplet designers. We propose Remote Control (RC) , a simple routing oblivious deadlock avoidance scheme based on selective injection-control mechanism. Along with guarantee on deadlock freedom, RC aims to provide a methodology to make each independently designed chiplet seamlessly integrate in any modular SoCs. We achieve up to 56.34% throughput and 15.49% zero load latency improvements on synthetic traffic and up to 20% speedup on real workloads taken from vast range of benchmark suites, over the state-of-the-art turn restriction based technique applied in the modular SoC domain.</description><subject>Automobiles</subject><subject>Avoidance</subject><subject>boundary router</subject><subject>Complexity</subject><subject>Design</subject><subject>Designers</subject><subject>inbound and outbound traffic</subject><subject>injection control</subject><subject>Modular design</subject><subject>modular SoC</subject><subject>Modular systems</subject><subject>Network deadlock</subject><subject>Remote control</subject><subject>Roads</subject><subject>Routing</subject><subject>Silicon</subject><subject>System on chip</subject><subject>System recovery</subject><subject>Traffic speed</subject><subject>Transistors</subject><subject>Urban areas</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDtPwzAUhS0EEqUwM7BYYk57bdepzVaFp1RAomW2_IqaksTBTpH67wlqxXSW79x79CF0TWBCCMjpuphQoDBhQGUu6AkaEc7nmZQ8P0UjACIyyWZwji5S2gJATkGO0NuHb0LvcRHaPob6Di_wqmq62uN7r10d7Bde_ITK6dZ6vLIb33hchohfg9vVOuLVPvW-SVlos2JTdZforNR18lfHHKPPx4d18Zwt359eisUys4xBn9EZE6UYFpQzTozJNTF5yZzkcwbG5aXxkgrn5FwYA9Z5LomhnDFDtbbSajZGt4e7XQzfO596tQ272A4vFeUCQEoGYqCmB8rGkFL0pepi1ei4VwTUnzS1LtSfNHWUNjRuDo3Ke_9PSzq4yiX7BZkMZvU</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Majumder, Pritam</creator><creator>Kim, Sungkeun</creator><creator>Huang, Jiayi</creator><creator>Yum, Ki Hwan</creator><creator>Kim, Eun Jung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0313-7526</orcidid><orcidid>https://orcid.org/0000-0003-0855-2443</orcidid><orcidid>https://orcid.org/0000-0003-4011-6668</orcidid><orcidid>https://orcid.org/0000-0002-3130-1434</orcidid></search><sort><creationdate>20211101</creationdate><title>Remote Control: A Simple Deadlock Avoidance Scheme for Modular Systems-on-Chip</title><author>Majumder, Pritam ; Kim, Sungkeun ; Huang, Jiayi ; Yum, Ki Hwan ; Kim, Eun Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-2438f8620f451bb6a1b6f3d95730bd6fbe928dd978bb0cde591b2533b2aac9ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automobiles</topic><topic>Avoidance</topic><topic>boundary router</topic><topic>Complexity</topic><topic>Design</topic><topic>Designers</topic><topic>inbound and outbound traffic</topic><topic>injection control</topic><topic>Modular design</topic><topic>modular SoC</topic><topic>Modular systems</topic><topic>Network deadlock</topic><topic>Remote control</topic><topic>Roads</topic><topic>Routing</topic><topic>Silicon</topic><topic>System on chip</topic><topic>System recovery</topic><topic>Traffic speed</topic><topic>Transistors</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumder, Pritam</creatorcontrib><creatorcontrib>Kim, Sungkeun</creatorcontrib><creatorcontrib>Huang, Jiayi</creatorcontrib><creatorcontrib>Yum, Ki Hwan</creatorcontrib><creatorcontrib>Kim, Eun Jung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Majumder, Pritam</au><au>Kim, Sungkeun</au><au>Huang, Jiayi</au><au>Yum, Ki Hwan</au><au>Kim, Eun Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Control: A Simple Deadlock Avoidance Scheme for Modular Systems-on-Chip</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>70</volume><issue>11</issue><spage>1928</spage><epage>1941</epage><pages>1928-1941</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Ever increasing performance demand and shrinking in the transistor size together result in complex and dense packing in large chips. That motivates designers to opt for many small specialized hardware modules in a chip to extract maximum performance benefits with relatively lower complexity and cost. These altogether opens up new directions for heterogeneous modular System-on-Chip (SoC) research, where a large system is built by assembling small independently designed chiplets (small chips). We focus on the communication aspect of such SoCs, especially the newly observed deadlock among chiplets. Even though deadlock is a classic problem in networks and many solutions are available, the modular SoC design demands customized solutions that preserves the design flexibility for chiplet designers. We propose Remote Control (RC) , a simple routing oblivious deadlock avoidance scheme based on selective injection-control mechanism. Along with guarantee on deadlock freedom, RC aims to provide a methodology to make each independently designed chiplet seamlessly integrate in any modular SoCs. We achieve up to 56.34% throughput and 15.49% zero load latency improvements on synthetic traffic and up to 20% speedup on real workloads taken from vast range of benchmark suites, over the state-of-the-art turn restriction based technique applied in the modular SoC domain.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2020.3029682</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0313-7526</orcidid><orcidid>https://orcid.org/0000-0003-0855-2443</orcidid><orcidid>https://orcid.org/0000-0003-4011-6668</orcidid><orcidid>https://orcid.org/0000-0002-3130-1434</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2021-11, Vol.70 (11), p.1928-1941 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_ieee_primary_9220969 |
source | IEEE Electronic Library (IEL) |
subjects | Automobiles Avoidance boundary router Complexity Design Designers inbound and outbound traffic injection control Modular design modular SoC Modular systems Network deadlock Remote control Roads Routing Silicon System on chip System recovery Traffic speed Transistors Urban areas |
title | Remote Control: A Simple Deadlock Avoidance Scheme for Modular Systems-on-Chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Control:%20A%20Simple%20Deadlock%20Avoidance%20Scheme%20for%20Modular%20Systems-on-Chip&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Majumder,%20Pritam&rft.date=2021-11-01&rft.volume=70&rft.issue=11&rft.spage=1928&rft.epage=1941&rft.pages=1928-1941&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2020.3029682&rft_dat=%3Cproquest_RIE%3E2580099308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580099308&rft_id=info:pmid/&rft_ieee_id=9220969&rfr_iscdi=true |