Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar

The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2021-07, Vol.59 (7), p.5630-5641
Hauptverfasser: Zhu, Ziwei, Qi, Youcun, Cao, Qing, Li, Donghuan, Zhang, Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5641
container_issue 7
container_start_page 5630
container_title IEEE transactions on geoscience and remote sensing
container_volume 59
creator Zhu, Ziwei
Qi, Youcun
Cao, Qing
Li, Donghuan
Zhang, Zhe
description The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is necessary before the vertical profile of reflectivity (VPR) measured by spaceborne radars can be utilized to improve the ground-based radar QPE in western China. This study presents a conversion method using GPM DPR measurements, i.e., the drop size distribution (DSD) for different precipitation types (the stratiform with/without BB and the convective cases) and particle phases (the solid, melting, and liquid). Using the {T} -matrix method, the reflectivity difference between Ku-band and C-band is found and the Ku-band to C-band conversion relations are derived with the linear regression. These conversion relations have been validated by matching and comparing the converted C-band reflectivity with the C-band ground-based radar measurements. The results demonstrate the effectiveness and reliability of the conversion. This method can be extended for the reflectivity conversion in other frequencies and can facilitate the incorporation of reflectivity measurements from various instruments.
doi_str_mv 10.1109/TGRS.2020.3025803
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9212595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9212595</ieee_id><sourcerecordid>2544296941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fb7b194e65672d8982fc163675289a55098672bc36170bae70b38ddb71cd06883</originalsourceid><addsrcrecordid>eNpdUUtu2zAQJYoGiOvkAEE3BLqWS1IiRS4bJ3aDOEjgfLYCRY1QGrLoklQA9469Uyk7zSIbcjDzPoN5CF1QMqOUqO9Py_XjjBFGZjlhXJL8E5pQzmVGRFF8RhNClciYVOwUfQlhQwgtOC0n6O_c9a_gg3U9di2OvwC_gI_W6A4_eNfaDsb-GtoOTLSvNu7xwrstvh2yS903ODo8P1aXOkCDk84ocuXdDj_aP6myIXpbD3G0uAMdBg9b6GP477fsXH1wA2N3NuqPQHxnw2G_q0F32cLD7wF6s_9AWOtG-zN00uouwPnbP0XPi-un-c9sdb-8mf9YZYapPGZtXdZUFSC4KFkjlWStoSIXJU8X0pwTJdOgNrmgJak1pCeXTVOX1DRESJlP0bej7s67tE2I1cYNvk-WFeNFwZRQBU0oekQZ70Lw0FY7b7fa7ytKqjG1akytGlOr3lJLnK9HjgWAd7xilHHF838hwJZW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544296941</pqid></control><display><type>article</type><title>Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Ziwei ; Qi, Youcun ; Cao, Qing ; Li, Donghuan ; Zhang, Zhe</creator><creatorcontrib>Zhu, Ziwei ; Qi, Youcun ; Cao, Qing ; Li, Donghuan ; Zhang, Zhe</creatorcontrib><description>The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is necessary before the vertical profile of reflectivity (VPR) measured by spaceborne radars can be utilized to improve the ground-based radar QPE in western China. This study presents a conversion method using GPM DPR measurements, i.e., the drop size distribution (DSD) for different precipitation types (the stratiform with/without BB and the convective cases) and particle phases (the solid, melting, and liquid). Using the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{T} &lt;/tex-math&gt;&lt;/inline-formula&gt;-matrix method, the reflectivity difference between Ku-band and C-band is found and the Ku-band to C-band conversion relations are derived with the linear regression. These conversion relations have been validated by matching and comparing the converted C-band reflectivity with the C-band ground-based radar measurements. The results demonstrate the effectiveness and reliability of the conversion. This method can be extended for the reflectivity conversion in other frequencies and can facilitate the incorporation of reflectivity measurements from various instruments.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3025803</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric measurements ; Atmospheric precipitations ; C band ; Conversion ; Drop size ; Dual-frequency precipitation radar ; Instruments ; Measurement ; Measuring instruments ; Meteorological radar ; Mountain regions ; Mountainous areas ; Particle measurements ; Particle size distribution ; particle size distribution (PSD) ; Precipitation ; Radar ; Radar measurement ; Radar measurements ; radar reflectivity conversion ; Rain ; rain types ; Rainfall ; Reflectance ; Scattering ; scattering characteristics of hydrometeors ; Size distribution ; Spaceborne radar ; Superhigh frequencies ; TRMM satellite ; Tropical climate ; Vertical profiles</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-07, Vol.59 (7), p.5630-5641</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fb7b194e65672d8982fc163675289a55098672bc36170bae70b38ddb71cd06883</citedby><cites>FETCH-LOGICAL-c293t-fb7b194e65672d8982fc163675289a55098672bc36170bae70b38ddb71cd06883</cites><orcidid>0000-0001-7972-9336 ; 0000-0002-2636-2275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9212595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9212595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Ziwei</creatorcontrib><creatorcontrib>Qi, Youcun</creatorcontrib><creatorcontrib>Cao, Qing</creatorcontrib><creatorcontrib>Li, Donghuan</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><title>Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is necessary before the vertical profile of reflectivity (VPR) measured by spaceborne radars can be utilized to improve the ground-based radar QPE in western China. This study presents a conversion method using GPM DPR measurements, i.e., the drop size distribution (DSD) for different precipitation types (the stratiform with/without BB and the convective cases) and particle phases (the solid, melting, and liquid). Using the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{T} &lt;/tex-math&gt;&lt;/inline-formula&gt;-matrix method, the reflectivity difference between Ku-band and C-band is found and the Ku-band to C-band conversion relations are derived with the linear regression. These conversion relations have been validated by matching and comparing the converted C-band reflectivity with the C-band ground-based radar measurements. The results demonstrate the effectiveness and reliability of the conversion. This method can be extended for the reflectivity conversion in other frequencies and can facilitate the incorporation of reflectivity measurements from various instruments.</description><subject>Atmospheric measurements</subject><subject>Atmospheric precipitations</subject><subject>C band</subject><subject>Conversion</subject><subject>Drop size</subject><subject>Dual-frequency precipitation radar</subject><subject>Instruments</subject><subject>Measurement</subject><subject>Measuring instruments</subject><subject>Meteorological radar</subject><subject>Mountain regions</subject><subject>Mountainous areas</subject><subject>Particle measurements</subject><subject>Particle size distribution</subject><subject>particle size distribution (PSD)</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Radar measurement</subject><subject>Radar measurements</subject><subject>radar reflectivity conversion</subject><subject>Rain</subject><subject>rain types</subject><subject>Rainfall</subject><subject>Reflectance</subject><subject>Scattering</subject><subject>scattering characteristics of hydrometeors</subject><subject>Size distribution</subject><subject>Spaceborne radar</subject><subject>Superhigh frequencies</subject><subject>TRMM satellite</subject><subject>Tropical climate</subject><subject>Vertical profiles</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdUUtu2zAQJYoGiOvkAEE3BLqWS1IiRS4bJ3aDOEjgfLYCRY1QGrLoklQA9469Uyk7zSIbcjDzPoN5CF1QMqOUqO9Py_XjjBFGZjlhXJL8E5pQzmVGRFF8RhNClciYVOwUfQlhQwgtOC0n6O_c9a_gg3U9di2OvwC_gI_W6A4_eNfaDsb-GtoOTLSvNu7xwrstvh2yS903ODo8P1aXOkCDk84ocuXdDj_aP6myIXpbD3G0uAMdBg9b6GP477fsXH1wA2N3NuqPQHxnw2G_q0F32cLD7wF6s_9AWOtG-zN00uouwPnbP0XPi-un-c9sdb-8mf9YZYapPGZtXdZUFSC4KFkjlWStoSIXJU8X0pwTJdOgNrmgJak1pCeXTVOX1DRESJlP0bej7s67tE2I1cYNvk-WFeNFwZRQBU0oekQZ70Lw0FY7b7fa7ytKqjG1akytGlOr3lJLnK9HjgWAd7xilHHF838hwJZW</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zhu, Ziwei</creator><creator>Qi, Youcun</creator><creator>Cao, Qing</creator><creator>Li, Donghuan</creator><creator>Zhang, Zhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7972-9336</orcidid><orcidid>https://orcid.org/0000-0002-2636-2275</orcidid></search><sort><creationdate>20210701</creationdate><title>Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar</title><author>Zhu, Ziwei ; Qi, Youcun ; Cao, Qing ; Li, Donghuan ; Zhang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fb7b194e65672d8982fc163675289a55098672bc36170bae70b38ddb71cd06883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric measurements</topic><topic>Atmospheric precipitations</topic><topic>C band</topic><topic>Conversion</topic><topic>Drop size</topic><topic>Dual-frequency precipitation radar</topic><topic>Instruments</topic><topic>Measurement</topic><topic>Measuring instruments</topic><topic>Meteorological radar</topic><topic>Mountain regions</topic><topic>Mountainous areas</topic><topic>Particle measurements</topic><topic>Particle size distribution</topic><topic>particle size distribution (PSD)</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Radar measurement</topic><topic>Radar measurements</topic><topic>radar reflectivity conversion</topic><topic>Rain</topic><topic>rain types</topic><topic>Rainfall</topic><topic>Reflectance</topic><topic>Scattering</topic><topic>scattering characteristics of hydrometeors</topic><topic>Size distribution</topic><topic>Spaceborne radar</topic><topic>Superhigh frequencies</topic><topic>TRMM satellite</topic><topic>Tropical climate</topic><topic>Vertical profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ziwei</creatorcontrib><creatorcontrib>Qi, Youcun</creatorcontrib><creatorcontrib>Cao, Qing</creatorcontrib><creatorcontrib>Li, Donghuan</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Ziwei</au><au>Qi, Youcun</au><au>Cao, Qing</au><au>Li, Donghuan</au><au>Zhang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>59</volume><issue>7</issue><spage>5630</spage><epage>5641</epage><pages>5630-5641</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is necessary before the vertical profile of reflectivity (VPR) measured by spaceborne radars can be utilized to improve the ground-based radar QPE in western China. This study presents a conversion method using GPM DPR measurements, i.e., the drop size distribution (DSD) for different precipitation types (the stratiform with/without BB and the convective cases) and particle phases (the solid, melting, and liquid). Using the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{T} &lt;/tex-math&gt;&lt;/inline-formula&gt;-matrix method, the reflectivity difference between Ku-band and C-band is found and the Ku-band to C-band conversion relations are derived with the linear regression. These conversion relations have been validated by matching and comparing the converted C-band reflectivity with the C-band ground-based radar measurements. The results demonstrate the effectiveness and reliability of the conversion. This method can be extended for the reflectivity conversion in other frequencies and can facilitate the incorporation of reflectivity measurements from various instruments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3025803</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7972-9336</orcidid><orcidid>https://orcid.org/0000-0002-2636-2275</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2021-07, Vol.59 (7), p.5630-5641
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9212595
source IEEE Electronic Library (IEL)
subjects Atmospheric measurements
Atmospheric precipitations
C band
Conversion
Drop size
Dual-frequency precipitation radar
Instruments
Measurement
Measuring instruments
Meteorological radar
Mountain regions
Mountainous areas
Particle measurements
Particle size distribution
particle size distribution (PSD)
Precipitation
Radar
Radar measurement
Radar measurements
radar reflectivity conversion
Rain
rain types
Rainfall
Reflectance
Scattering
scattering characteristics of hydrometeors
Size distribution
Spaceborne radar
Superhigh frequencies
TRMM satellite
Tropical climate
Vertical profiles
title Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20of%20the%20Vertical%20Profile%20of%20Reflectivity%20From%20Ku-Band%20to%20C-Band%20Based%20on%20the%20Drop%20Size%20Distribution%20Measurements%20of%20the%20Global%20Precipitation%20Measurement%20Mission%20Dual-Frequency%20Precipitation%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhu,%20Ziwei&rft.date=2021-07-01&rft.volume=59&rft.issue=7&rft.spage=5630&rft.epage=5641&rft.pages=5630-5641&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3025803&rft_dat=%3Cproquest_RIE%3E2544296941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544296941&rft_id=info:pmid/&rft_ieee_id=9212595&rfr_iscdi=true