Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar
The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-base...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2021-07, Vol.59 (7), p.5630-5641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5641 |
---|---|
container_issue | 7 |
container_start_page | 5630 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 59 |
creator | Zhu, Ziwei Qi, Youcun Cao, Qing Li, Donghuan Zhang, Zhe |
description | The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is necessary before the vertical profile of reflectivity (VPR) measured by spaceborne radars can be utilized to improve the ground-based radar QPE in western China. This study presents a conversion method using GPM DPR measurements, i.e., the drop size distribution (DSD) for different precipitation types (the stratiform with/without BB and the convective cases) and particle phases (the solid, melting, and liquid). Using the {T} -matrix method, the reflectivity difference between Ku-band and C-band is found and the Ku-band to C-band conversion relations are derived with the linear regression. These conversion relations have been validated by matching and comparing the converted C-band reflectivity with the C-band ground-based radar measurements. The results demonstrate the effectiveness and reliability of the conversion. This method can be extended for the reflectivity conversion in other frequencies and can facilitate the incorporation of reflectivity measurements from various instruments. |
doi_str_mv | 10.1109/TGRS.2020.3025803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9212595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9212595</ieee_id><sourcerecordid>2544296941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fb7b194e65672d8982fc163675289a55098672bc36170bae70b38ddb71cd06883</originalsourceid><addsrcrecordid>eNpdUUtu2zAQJYoGiOvkAEE3BLqWS1IiRS4bJ3aDOEjgfLYCRY1QGrLoklQA9469Uyk7zSIbcjDzPoN5CF1QMqOUqO9Py_XjjBFGZjlhXJL8E5pQzmVGRFF8RhNClciYVOwUfQlhQwgtOC0n6O_c9a_gg3U9di2OvwC_gI_W6A4_eNfaDsb-GtoOTLSvNu7xwrstvh2yS903ODo8P1aXOkCDk84ocuXdDj_aP6myIXpbD3G0uAMdBg9b6GP477fsXH1wA2N3NuqPQHxnw2G_q0F32cLD7wF6s_9AWOtG-zN00uouwPnbP0XPi-un-c9sdb-8mf9YZYapPGZtXdZUFSC4KFkjlWStoSIXJU8X0pwTJdOgNrmgJak1pCeXTVOX1DRESJlP0bej7s67tE2I1cYNvk-WFeNFwZRQBU0oekQZ70Lw0FY7b7fa7ytKqjG1akytGlOr3lJLnK9HjgWAd7xilHHF838hwJZW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544296941</pqid></control><display><type>article</type><title>Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Ziwei ; Qi, Youcun ; Cao, Qing ; Li, Donghuan ; Zhang, Zhe</creator><creatorcontrib>Zhu, Ziwei ; Qi, Youcun ; Cao, Qing ; Li, Donghuan ; Zhang, Zhe</creatorcontrib><description>The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is necessary before the vertical profile of reflectivity (VPR) measured by spaceborne radars can be utilized to improve the ground-based radar QPE in western China. This study presents a conversion method using GPM DPR measurements, i.e., the drop size distribution (DSD) for different precipitation types (the stratiform with/without BB and the convective cases) and particle phases (the solid, melting, and liquid). Using the <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>-matrix method, the reflectivity difference between Ku-band and C-band is found and the Ku-band to C-band conversion relations are derived with the linear regression. These conversion relations have been validated by matching and comparing the converted C-band reflectivity with the C-band ground-based radar measurements. The results demonstrate the effectiveness and reliability of the conversion. This method can be extended for the reflectivity conversion in other frequencies and can facilitate the incorporation of reflectivity measurements from various instruments.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3025803</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric measurements ; Atmospheric precipitations ; C band ; Conversion ; Drop size ; Dual-frequency precipitation radar ; Instruments ; Measurement ; Measuring instruments ; Meteorological radar ; Mountain regions ; Mountainous areas ; Particle measurements ; Particle size distribution ; particle size distribution (PSD) ; Precipitation ; Radar ; Radar measurement ; Radar measurements ; radar reflectivity conversion ; Rain ; rain types ; Rainfall ; Reflectance ; Scattering ; scattering characteristics of hydrometeors ; Size distribution ; Spaceborne radar ; Superhigh frequencies ; TRMM satellite ; Tropical climate ; Vertical profiles</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-07, Vol.59 (7), p.5630-5641</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fb7b194e65672d8982fc163675289a55098672bc36170bae70b38ddb71cd06883</citedby><cites>FETCH-LOGICAL-c293t-fb7b194e65672d8982fc163675289a55098672bc36170bae70b38ddb71cd06883</cites><orcidid>0000-0001-7972-9336 ; 0000-0002-2636-2275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9212595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9212595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Ziwei</creatorcontrib><creatorcontrib>Qi, Youcun</creatorcontrib><creatorcontrib>Cao, Qing</creatorcontrib><creatorcontrib>Li, Donghuan</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><title>Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is necessary before the vertical profile of reflectivity (VPR) measured by spaceborne radars can be utilized to improve the ground-based radar QPE in western China. This study presents a conversion method using GPM DPR measurements, i.e., the drop size distribution (DSD) for different precipitation types (the stratiform with/without BB and the convective cases) and particle phases (the solid, melting, and liquid). Using the <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>-matrix method, the reflectivity difference between Ku-band and C-band is found and the Ku-band to C-band conversion relations are derived with the linear regression. These conversion relations have been validated by matching and comparing the converted C-band reflectivity with the C-band ground-based radar measurements. The results demonstrate the effectiveness and reliability of the conversion. This method can be extended for the reflectivity conversion in other frequencies and can facilitate the incorporation of reflectivity measurements from various instruments.</description><subject>Atmospheric measurements</subject><subject>Atmospheric precipitations</subject><subject>C band</subject><subject>Conversion</subject><subject>Drop size</subject><subject>Dual-frequency precipitation radar</subject><subject>Instruments</subject><subject>Measurement</subject><subject>Measuring instruments</subject><subject>Meteorological radar</subject><subject>Mountain regions</subject><subject>Mountainous areas</subject><subject>Particle measurements</subject><subject>Particle size distribution</subject><subject>particle size distribution (PSD)</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Radar measurement</subject><subject>Radar measurements</subject><subject>radar reflectivity conversion</subject><subject>Rain</subject><subject>rain types</subject><subject>Rainfall</subject><subject>Reflectance</subject><subject>Scattering</subject><subject>scattering characteristics of hydrometeors</subject><subject>Size distribution</subject><subject>Spaceborne radar</subject><subject>Superhigh frequencies</subject><subject>TRMM satellite</subject><subject>Tropical climate</subject><subject>Vertical profiles</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdUUtu2zAQJYoGiOvkAEE3BLqWS1IiRS4bJ3aDOEjgfLYCRY1QGrLoklQA9469Uyk7zSIbcjDzPoN5CF1QMqOUqO9Py_XjjBFGZjlhXJL8E5pQzmVGRFF8RhNClciYVOwUfQlhQwgtOC0n6O_c9a_gg3U9di2OvwC_gI_W6A4_eNfaDsb-GtoOTLSvNu7xwrstvh2yS903ODo8P1aXOkCDk84ocuXdDj_aP6myIXpbD3G0uAMdBg9b6GP477fsXH1wA2N3NuqPQHxnw2G_q0F32cLD7wF6s_9AWOtG-zN00uouwPnbP0XPi-un-c9sdb-8mf9YZYapPGZtXdZUFSC4KFkjlWStoSIXJU8X0pwTJdOgNrmgJak1pCeXTVOX1DRESJlP0bej7s67tE2I1cYNvk-WFeNFwZRQBU0oekQZ70Lw0FY7b7fa7ytKqjG1akytGlOr3lJLnK9HjgWAd7xilHHF838hwJZW</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Zhu, Ziwei</creator><creator>Qi, Youcun</creator><creator>Cao, Qing</creator><creator>Li, Donghuan</creator><creator>Zhang, Zhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7972-9336</orcidid><orcidid>https://orcid.org/0000-0002-2636-2275</orcidid></search><sort><creationdate>20210701</creationdate><title>Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar</title><author>Zhu, Ziwei ; Qi, Youcun ; Cao, Qing ; Li, Donghuan ; Zhang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fb7b194e65672d8982fc163675289a55098672bc36170bae70b38ddb71cd06883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric measurements</topic><topic>Atmospheric precipitations</topic><topic>C band</topic><topic>Conversion</topic><topic>Drop size</topic><topic>Dual-frequency precipitation radar</topic><topic>Instruments</topic><topic>Measurement</topic><topic>Measuring instruments</topic><topic>Meteorological radar</topic><topic>Mountain regions</topic><topic>Mountainous areas</topic><topic>Particle measurements</topic><topic>Particle size distribution</topic><topic>particle size distribution (PSD)</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Radar measurement</topic><topic>Radar measurements</topic><topic>radar reflectivity conversion</topic><topic>Rain</topic><topic>rain types</topic><topic>Rainfall</topic><topic>Reflectance</topic><topic>Scattering</topic><topic>scattering characteristics of hydrometeors</topic><topic>Size distribution</topic><topic>Spaceborne radar</topic><topic>Superhigh frequencies</topic><topic>TRMM satellite</topic><topic>Tropical climate</topic><topic>Vertical profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ziwei</creatorcontrib><creatorcontrib>Qi, Youcun</creatorcontrib><creatorcontrib>Cao, Qing</creatorcontrib><creatorcontrib>Li, Donghuan</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Ziwei</au><au>Qi, Youcun</au><au>Cao, Qing</au><au>Li, Donghuan</au><au>Zhang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>59</volume><issue>7</issue><spage>5630</spage><epage>5641</epage><pages>5630-5641</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is necessary before the vertical profile of reflectivity (VPR) measured by spaceborne radars can be utilized to improve the ground-based radar QPE in western China. This study presents a conversion method using GPM DPR measurements, i.e., the drop size distribution (DSD) for different precipitation types (the stratiform with/without BB and the convective cases) and particle phases (the solid, melting, and liquid). Using the <inline-formula> <tex-math notation="LaTeX">{T} </tex-math></inline-formula>-matrix method, the reflectivity difference between Ku-band and C-band is found and the Ku-band to C-band conversion relations are derived with the linear regression. These conversion relations have been validated by matching and comparing the converted C-band reflectivity with the C-band ground-based radar measurements. The results demonstrate the effectiveness and reliability of the conversion. This method can be extended for the reflectivity conversion in other frequencies and can facilitate the incorporation of reflectivity measurements from various instruments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3025803</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7972-9336</orcidid><orcidid>https://orcid.org/0000-0002-2636-2275</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2021-07, Vol.59 (7), p.5630-5641 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9212595 |
source | IEEE Electronic Library (IEL) |
subjects | Atmospheric measurements Atmospheric precipitations C band Conversion Drop size Dual-frequency precipitation radar Instruments Measurement Measuring instruments Meteorological radar Mountain regions Mountainous areas Particle measurements Particle size distribution particle size distribution (PSD) Precipitation Radar Radar measurement Radar measurements radar reflectivity conversion Rain rain types Rainfall Reflectance Scattering scattering characteristics of hydrometeors Size distribution Spaceborne radar Superhigh frequencies TRMM satellite Tropical climate Vertical profiles |
title | Conversion of the Vertical Profile of Reflectivity From Ku-Band to C-Band Based on the Drop Size Distribution Measurements of the Global Precipitation Measurement Mission Dual-Frequency Precipitation Radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%20of%20the%20Vertical%20Profile%20of%20Reflectivity%20From%20Ku-Band%20to%20C-Band%20Based%20on%20the%20Drop%20Size%20Distribution%20Measurements%20of%20the%20Global%20Precipitation%20Measurement%20Mission%20Dual-Frequency%20Precipitation%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhu,%20Ziwei&rft.date=2021-07-01&rft.volume=59&rft.issue=7&rft.spage=5630&rft.epage=5641&rft.pages=5630-5641&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3025803&rft_dat=%3Cproquest_RIE%3E2544296941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544296941&rft_id=info:pmid/&rft_ieee_id=9212595&rfr_iscdi=true |