Runtime Task Scheduling Using Imitation Learning for Heterogeneous Many-Core Systems
Domain-specific systems-on-chip, a class of heterogeneous many-core systems, is recognized as a key approach to narrow down the performance and energy-efficiency gap between custom hardware accelerators and programmable processors. Reaching the full potential of these architectures depends criticall...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2020-11, Vol.39 (11), p.4064-4077 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4077 |
---|---|
container_issue | 11 |
container_start_page | 4064 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 39 |
creator | Krishnakumar, Anish Arda, Samet E. Goksoy, A. Alper Mandal, Sumit K. Ogras, Umit Y. Sartor, Anderson L. Marculescu, Radu |
description | Domain-specific systems-on-chip, a class of heterogeneous many-core systems, is recognized as a key approach to narrow down the performance and energy-efficiency gap between custom hardware accelerators and programmable processors. Reaching the full potential of these architectures depends critically on optimally scheduling the applications to available resources at runtime. Existing optimization-based techniques cannot achieve this objective at runtime due to the combinatorial nature of the task scheduling problem. As the main theoretical contribution, this article poses scheduling as a classification problem and proposes a hierarchical imitation learning (IL)-based scheduler that learns from an Oracle to maximize the performance of multiple domain-specific applications. Extensive evaluations with six streaming applications from wireless communications and radar domains show that the proposed IL-based scheduler approximates an offline Oracle policy with more than 99% accuracy for performance- and energy-based optimization objectives. Furthermore, it achieves almost identical performance to the Oracle with a low runtime overhead and successfully adapts to new applications, many-core system configurations, and runtime variations in application characteristics. |
doi_str_mv | 10.1109/TCAD.2020.3012861 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9211494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9211494</ieee_id><sourcerecordid>2458744956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ae04b9cb4346b11dd168ff8929d02ef257a24330bd2e3cee989ee9cd4d5bc3b53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2d187LHUjwoVwabnZZNMamqTrbvJof_ehBYv78DwvDPwMHaPMEME9ZQt5s8zDhxmApCnMV6wCSqRhBIjvGQT4EkaAiRwzW683wGgjLiasOyrb7u6oSAz_idYF99U9vu63QYbP-Z7U3emq20brMi4dlxV1gVL6sjZLbVkex98mPYYLqyjYH30HTX-ll1VZu_p7jynbPP6ki2W4erz7X0xX4UFV6ILDYHMVZFLIeMcsSwxTqsqVVyVwKniUWK4FALykpMoiFSqhihKWUZ5IfJITNnj6e7B2d-efKd3tnft8FJzGaWJlCqKBwpPVOGs944qfXB1Y9xRI-hRnh7l6VGePssbOg-nTk1E_7ziiFJJ8QdbeGt-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458744956</pqid></control><display><type>article</type><title>Runtime Task Scheduling Using Imitation Learning for Heterogeneous Many-Core Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Krishnakumar, Anish ; Arda, Samet E. ; Goksoy, A. Alper ; Mandal, Sumit K. ; Ogras, Umit Y. ; Sartor, Anderson L. ; Marculescu, Radu</creator><creatorcontrib>Krishnakumar, Anish ; Arda, Samet E. ; Goksoy, A. Alper ; Mandal, Sumit K. ; Ogras, Umit Y. ; Sartor, Anderson L. ; Marculescu, Radu</creatorcontrib><description>Domain-specific systems-on-chip, a class of heterogeneous many-core systems, is recognized as a key approach to narrow down the performance and energy-efficiency gap between custom hardware accelerators and programmable processors. Reaching the full potential of these architectures depends critically on optimally scheduling the applications to available resources at runtime. Existing optimization-based techniques cannot achieve this objective at runtime due to the combinatorial nature of the task scheduling problem. As the main theoretical contribution, this article poses scheduling as a classification problem and proposes a hierarchical imitation learning (IL)-based scheduler that learns from an Oracle to maximize the performance of multiple domain-specific applications. Extensive evaluations with six streaming applications from wireless communications and radar domains show that the proposed IL-based scheduler approximates an offline Oracle policy with more than 99% accuracy for performance- and energy-based optimization objectives. Furthermore, it achieves almost identical performance to the Oracle with a low runtime overhead and successfully adapts to new applications, many-core system configurations, and runtime variations in application characteristics.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2020.3012861</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerators ; Combinatorial analysis ; Computer architecture ; Digital media ; Domain-specific SoC (DSSoC) ; heterogeneous computing ; imitation learning (IL) ; Learning ; many-core architectures ; Optimal scheduling ; Optimization ; Processor scheduling ; Run time (computers) ; Runtime ; Scheduling ; System on chip ; Task analysis ; Task scheduling ; Wireless communications</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2020-11, Vol.39 (11), p.4064-4077</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ae04b9cb4346b11dd168ff8929d02ef257a24330bd2e3cee989ee9cd4d5bc3b53</citedby><cites>FETCH-LOGICAL-c293t-ae04b9cb4346b11dd168ff8929d02ef257a24330bd2e3cee989ee9cd4d5bc3b53</cites><orcidid>0000-0002-5045-5535 ; 0000-0003-1759-2762 ; 0000-0003-2419-1860 ; 0000-0002-9294-1603 ; 0000-0001-8679-9842 ; 0000-0003-1826-7646 ; 0000-0003-3269-7095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9211494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9211494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishnakumar, Anish</creatorcontrib><creatorcontrib>Arda, Samet E.</creatorcontrib><creatorcontrib>Goksoy, A. Alper</creatorcontrib><creatorcontrib>Mandal, Sumit K.</creatorcontrib><creatorcontrib>Ogras, Umit Y.</creatorcontrib><creatorcontrib>Sartor, Anderson L.</creatorcontrib><creatorcontrib>Marculescu, Radu</creatorcontrib><title>Runtime Task Scheduling Using Imitation Learning for Heterogeneous Many-Core Systems</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Domain-specific systems-on-chip, a class of heterogeneous many-core systems, is recognized as a key approach to narrow down the performance and energy-efficiency gap between custom hardware accelerators and programmable processors. Reaching the full potential of these architectures depends critically on optimally scheduling the applications to available resources at runtime. Existing optimization-based techniques cannot achieve this objective at runtime due to the combinatorial nature of the task scheduling problem. As the main theoretical contribution, this article poses scheduling as a classification problem and proposes a hierarchical imitation learning (IL)-based scheduler that learns from an Oracle to maximize the performance of multiple domain-specific applications. Extensive evaluations with six streaming applications from wireless communications and radar domains show that the proposed IL-based scheduler approximates an offline Oracle policy with more than 99% accuracy for performance- and energy-based optimization objectives. Furthermore, it achieves almost identical performance to the Oracle with a low runtime overhead and successfully adapts to new applications, many-core system configurations, and runtime variations in application characteristics.</description><subject>Accelerators</subject><subject>Combinatorial analysis</subject><subject>Computer architecture</subject><subject>Digital media</subject><subject>Domain-specific SoC (DSSoC)</subject><subject>heterogeneous computing</subject><subject>imitation learning (IL)</subject><subject>Learning</subject><subject>many-core architectures</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Processor scheduling</subject><subject>Run time (computers)</subject><subject>Runtime</subject><subject>Scheduling</subject><subject>System on chip</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>Wireless communications</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2d187LHUjwoVwabnZZNMamqTrbvJof_ehBYv78DwvDPwMHaPMEME9ZQt5s8zDhxmApCnMV6wCSqRhBIjvGQT4EkaAiRwzW683wGgjLiasOyrb7u6oSAz_idYF99U9vu63QYbP-Z7U3emq20brMi4dlxV1gVL6sjZLbVkex98mPYYLqyjYH30HTX-ll1VZu_p7jynbPP6ki2W4erz7X0xX4UFV6ILDYHMVZFLIeMcsSwxTqsqVVyVwKniUWK4FALykpMoiFSqhihKWUZ5IfJITNnj6e7B2d-efKd3tnft8FJzGaWJlCqKBwpPVOGs944qfXB1Y9xRI-hRnh7l6VGePssbOg-nTk1E_7ziiFJJ8QdbeGt-</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Krishnakumar, Anish</creator><creator>Arda, Samet E.</creator><creator>Goksoy, A. Alper</creator><creator>Mandal, Sumit K.</creator><creator>Ogras, Umit Y.</creator><creator>Sartor, Anderson L.</creator><creator>Marculescu, Radu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5045-5535</orcidid><orcidid>https://orcid.org/0000-0003-1759-2762</orcidid><orcidid>https://orcid.org/0000-0003-2419-1860</orcidid><orcidid>https://orcid.org/0000-0002-9294-1603</orcidid><orcidid>https://orcid.org/0000-0001-8679-9842</orcidid><orcidid>https://orcid.org/0000-0003-1826-7646</orcidid><orcidid>https://orcid.org/0000-0003-3269-7095</orcidid></search><sort><creationdate>20201101</creationdate><title>Runtime Task Scheduling Using Imitation Learning for Heterogeneous Many-Core Systems</title><author>Krishnakumar, Anish ; Arda, Samet E. ; Goksoy, A. Alper ; Mandal, Sumit K. ; Ogras, Umit Y. ; Sartor, Anderson L. ; Marculescu, Radu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ae04b9cb4346b11dd168ff8929d02ef257a24330bd2e3cee989ee9cd4d5bc3b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerators</topic><topic>Combinatorial analysis</topic><topic>Computer architecture</topic><topic>Digital media</topic><topic>Domain-specific SoC (DSSoC)</topic><topic>heterogeneous computing</topic><topic>imitation learning (IL)</topic><topic>Learning</topic><topic>many-core architectures</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Processor scheduling</topic><topic>Run time (computers)</topic><topic>Runtime</topic><topic>Scheduling</topic><topic>System on chip</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnakumar, Anish</creatorcontrib><creatorcontrib>Arda, Samet E.</creatorcontrib><creatorcontrib>Goksoy, A. Alper</creatorcontrib><creatorcontrib>Mandal, Sumit K.</creatorcontrib><creatorcontrib>Ogras, Umit Y.</creatorcontrib><creatorcontrib>Sartor, Anderson L.</creatorcontrib><creatorcontrib>Marculescu, Radu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnakumar, Anish</au><au>Arda, Samet E.</au><au>Goksoy, A. Alper</au><au>Mandal, Sumit K.</au><au>Ogras, Umit Y.</au><au>Sartor, Anderson L.</au><au>Marculescu, Radu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Runtime Task Scheduling Using Imitation Learning for Heterogeneous Many-Core Systems</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>39</volume><issue>11</issue><spage>4064</spage><epage>4077</epage><pages>4064-4077</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Domain-specific systems-on-chip, a class of heterogeneous many-core systems, is recognized as a key approach to narrow down the performance and energy-efficiency gap between custom hardware accelerators and programmable processors. Reaching the full potential of these architectures depends critically on optimally scheduling the applications to available resources at runtime. Existing optimization-based techniques cannot achieve this objective at runtime due to the combinatorial nature of the task scheduling problem. As the main theoretical contribution, this article poses scheduling as a classification problem and proposes a hierarchical imitation learning (IL)-based scheduler that learns from an Oracle to maximize the performance of multiple domain-specific applications. Extensive evaluations with six streaming applications from wireless communications and radar domains show that the proposed IL-based scheduler approximates an offline Oracle policy with more than 99% accuracy for performance- and energy-based optimization objectives. Furthermore, it achieves almost identical performance to the Oracle with a low runtime overhead and successfully adapts to new applications, many-core system configurations, and runtime variations in application characteristics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2020.3012861</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5045-5535</orcidid><orcidid>https://orcid.org/0000-0003-1759-2762</orcidid><orcidid>https://orcid.org/0000-0003-2419-1860</orcidid><orcidid>https://orcid.org/0000-0002-9294-1603</orcidid><orcidid>https://orcid.org/0000-0001-8679-9842</orcidid><orcidid>https://orcid.org/0000-0003-1826-7646</orcidid><orcidid>https://orcid.org/0000-0003-3269-7095</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2020-11, Vol.39 (11), p.4064-4077 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_ieee_primary_9211494 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerators Combinatorial analysis Computer architecture Digital media Domain-specific SoC (DSSoC) heterogeneous computing imitation learning (IL) Learning many-core architectures Optimal scheduling Optimization Processor scheduling Run time (computers) Runtime Scheduling System on chip Task analysis Task scheduling Wireless communications |
title | Runtime Task Scheduling Using Imitation Learning for Heterogeneous Many-Core Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Runtime%20Task%20Scheduling%20Using%20Imitation%20Learning%20for%20Heterogeneous%20Many-Core%20Systems&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Krishnakumar,%20Anish&rft.date=2020-11-01&rft.volume=39&rft.issue=11&rft.spage=4064&rft.epage=4077&rft.pages=4064-4077&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2020.3012861&rft_dat=%3Cproquest_RIE%3E2458744956%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458744956&rft_id=info:pmid/&rft_ieee_id=9211494&rfr_iscdi=true |