Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency
Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented reality applications. In this article, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic environments. Previous methods detect dynamic components only...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2022-04, Vol.28 (4), p.1745-1757 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1757 |
---|---|
container_issue | 4 |
container_start_page | 1745 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 28 |
creator | Du, Zheng-Jun Huang, Shi-Sheng Mu, Tai-Jiang Zhao, Qunhe Martin, Ralph R. Xu, Kun |
description | Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented reality applications. In this article, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic environments. Previous methods detect dynamic components only across a short time-span of consecutive frames. Instead, we provide a more accurate dynamic 3D landmark detection method, followed by the use of long-term consistency via conditional random fields, which leverages long-term observations from multiple frames. Specifically, we first introduce an efficient initial camera pose estimation method based on distinguishing dynamic from static points using graph-cut RANSAC. These static/dynamic labels are used as priors for the unary potential in the conditional random fields, which further improves the accuracy of dynamic 3D landmark detection. Evaluation using the TUM and Bonn RGB-D dynamic datasets shows that our approach significantly outperforms state-of-the-art methods, providing much more accurate camera trajectory estimation in a variety of highly dynamic environments. We also show that dynamic 3D reconstruction can benefit from the camera poses estimated by our RGB-D SLAM approach. |
doi_str_mv | 10.1109/TVCG.2020.3028218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9210559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9210559</ieee_id><sourcerecordid>2633042519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9cbdf1f394d4167e468ae4e68490bbcf5a5e181e01c2fe55bd9b202ca97f12ca3</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRbK0-gAgS8OIldWazSbN4qtFWoSJo63XZbCYlpUlqNjn07d3S2oOnGZhvhvk_xq4RhoggH-bfyXTIgcMwAB5zjE9YH6VAH0KITl0Po5HPIx712IW1KwAUIpbnrBcEro9B9Nnj2Jiu0S15z9tKl4Xxvmbjd29hi2rpJZ8T_0lbyrxZXS39OTWll9SVLWxLldlesrNcry1dHeqALSYv8-TVn31M35LxzDeBkK0vTZrlmAdSZAKjEYko1iQoioWENDV5qEPCGAnQ8JzCMM1k6kIZLUc5uhIM2P3-7qapfzqyrSoLa2i91hXVnVXcpRIIIAOH3v1DV3XXVO47xSOXWvAQpaNwT5mmtrahXG2aotTNViGonVm1M6t2ZtXBrNu5PVzu0pKy48afSgfc7IGCiI5jyRHCUAa_u3t58A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633042519</pqid></control><display><type>article</type><title>Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency</title><source>IEEE Electronic Library (IEL)</source><creator>Du, Zheng-Jun ; Huang, Shi-Sheng ; Mu, Tai-Jiang ; Zhao, Qunhe ; Martin, Ralph R. ; Xu, Kun</creator><creatorcontrib>Du, Zheng-Jun ; Huang, Shi-Sheng ; Mu, Tai-Jiang ; Zhao, Qunhe ; Martin, Ralph R. ; Xu, Kun</creatorcontrib><description>Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented reality applications. In this article, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic environments. Previous methods detect dynamic components only across a short time-span of consecutive frames. Instead, we provide a more accurate dynamic 3D landmark detection method, followed by the use of long-term consistency via conditional random fields, which leverages long-term observations from multiple frames. Specifically, we first introduce an efficient initial camera pose estimation method based on distinguishing dynamic from static points using graph-cut RANSAC. These static/dynamic labels are used as priors for the unary potential in the conditional random fields, which further improves the accuracy of dynamic 3D landmark detection. Evaluation using the TUM and Bonn RGB-D dynamic datasets shows that our approach significantly outperforms state-of-the-art methods, providing much more accurate camera trajectory estimation in a variety of highly dynamic environments. We also show that dynamic 3D reconstruction can benefit from the camera poses estimated by our RGB-D SLAM approach.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2020.3028218</identifier><identifier>PMID: 33001804</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Augmented reality ; Cameras ; Conditional random fields ; Consistency ; dynamic SLAM ; Dynamics ; graph-cut RANSAC ; long-term consistency ; Pose estimation ; Reconstruction ; RGB-D SLAM ; Robustness ; Simultaneous localization and mapping ; Three-dimensional displays ; Trajectory analysis ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-04, Vol.28 (4), p.1745-1757</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9cbdf1f394d4167e468ae4e68490bbcf5a5e181e01c2fe55bd9b202ca97f12ca3</citedby><cites>FETCH-LOGICAL-c349t-9cbdf1f394d4167e468ae4e68490bbcf5a5e181e01c2fe55bd9b202ca97f12ca3</cites><orcidid>0000-0002-2671-4170 ; 0000-0002-9197-346X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9210559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9210559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33001804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Zheng-Jun</creatorcontrib><creatorcontrib>Huang, Shi-Sheng</creatorcontrib><creatorcontrib>Mu, Tai-Jiang</creatorcontrib><creatorcontrib>Zhao, Qunhe</creatorcontrib><creatorcontrib>Martin, Ralph R.</creatorcontrib><creatorcontrib>Xu, Kun</creatorcontrib><title>Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented reality applications. In this article, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic environments. Previous methods detect dynamic components only across a short time-span of consecutive frames. Instead, we provide a more accurate dynamic 3D landmark detection method, followed by the use of long-term consistency via conditional random fields, which leverages long-term observations from multiple frames. Specifically, we first introduce an efficient initial camera pose estimation method based on distinguishing dynamic from static points using graph-cut RANSAC. These static/dynamic labels are used as priors for the unary potential in the conditional random fields, which further improves the accuracy of dynamic 3D landmark detection. Evaluation using the TUM and Bonn RGB-D dynamic datasets shows that our approach significantly outperforms state-of-the-art methods, providing much more accurate camera trajectory estimation in a variety of highly dynamic environments. We also show that dynamic 3D reconstruction can benefit from the camera poses estimated by our RGB-D SLAM approach.</description><subject>Augmented reality</subject><subject>Cameras</subject><subject>Conditional random fields</subject><subject>Consistency</subject><subject>dynamic SLAM</subject><subject>Dynamics</subject><subject>graph-cut RANSAC</subject><subject>long-term consistency</subject><subject>Pose estimation</subject><subject>Reconstruction</subject><subject>RGB-D SLAM</subject><subject>Robustness</subject><subject>Simultaneous localization and mapping</subject><subject>Three-dimensional displays</subject><subject>Trajectory analysis</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFKw0AQhhdRbK0-gAgS8OIldWazSbN4qtFWoSJo63XZbCYlpUlqNjn07d3S2oOnGZhvhvk_xq4RhoggH-bfyXTIgcMwAB5zjE9YH6VAH0KITl0Po5HPIx712IW1KwAUIpbnrBcEro9B9Nnj2Jiu0S15z9tKl4Xxvmbjd29hi2rpJZ8T_0lbyrxZXS39OTWll9SVLWxLldlesrNcry1dHeqALSYv8-TVn31M35LxzDeBkK0vTZrlmAdSZAKjEYko1iQoioWENDV5qEPCGAnQ8JzCMM1k6kIZLUc5uhIM2P3-7qapfzqyrSoLa2i91hXVnVXcpRIIIAOH3v1DV3XXVO47xSOXWvAQpaNwT5mmtrahXG2aotTNViGonVm1M6t2ZtXBrNu5PVzu0pKy48afSgfc7IGCiI5jyRHCUAa_u3t58A</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Du, Zheng-Jun</creator><creator>Huang, Shi-Sheng</creator><creator>Mu, Tai-Jiang</creator><creator>Zhao, Qunhe</creator><creator>Martin, Ralph R.</creator><creator>Xu, Kun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2671-4170</orcidid><orcidid>https://orcid.org/0000-0002-9197-346X</orcidid></search><sort><creationdate>20220401</creationdate><title>Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency</title><author>Du, Zheng-Jun ; Huang, Shi-Sheng ; Mu, Tai-Jiang ; Zhao, Qunhe ; Martin, Ralph R. ; Xu, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9cbdf1f394d4167e468ae4e68490bbcf5a5e181e01c2fe55bd9b202ca97f12ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Augmented reality</topic><topic>Cameras</topic><topic>Conditional random fields</topic><topic>Consistency</topic><topic>dynamic SLAM</topic><topic>Dynamics</topic><topic>graph-cut RANSAC</topic><topic>long-term consistency</topic><topic>Pose estimation</topic><topic>Reconstruction</topic><topic>RGB-D SLAM</topic><topic>Robustness</topic><topic>Simultaneous localization and mapping</topic><topic>Three-dimensional displays</topic><topic>Trajectory analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Zheng-Jun</creatorcontrib><creatorcontrib>Huang, Shi-Sheng</creatorcontrib><creatorcontrib>Mu, Tai-Jiang</creatorcontrib><creatorcontrib>Zhao, Qunhe</creatorcontrib><creatorcontrib>Martin, Ralph R.</creatorcontrib><creatorcontrib>Xu, Kun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Zheng-Jun</au><au>Huang, Shi-Sheng</au><au>Mu, Tai-Jiang</au><au>Zhao, Qunhe</au><au>Martin, Ralph R.</au><au>Xu, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>28</volume><issue>4</issue><spage>1745</spage><epage>1757</epage><pages>1745-1757</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Accurate camera pose estimation is essential and challenging for real world dynamic 3D reconstruction and augmented reality applications. In this article, we present a novel RGB-D SLAM approach for accurate camera pose tracking in dynamic environments. Previous methods detect dynamic components only across a short time-span of consecutive frames. Instead, we provide a more accurate dynamic 3D landmark detection method, followed by the use of long-term consistency via conditional random fields, which leverages long-term observations from multiple frames. Specifically, we first introduce an efficient initial camera pose estimation method based on distinguishing dynamic from static points using graph-cut RANSAC. These static/dynamic labels are used as priors for the unary potential in the conditional random fields, which further improves the accuracy of dynamic 3D landmark detection. Evaluation using the TUM and Bonn RGB-D dynamic datasets shows that our approach significantly outperforms state-of-the-art methods, providing much more accurate camera trajectory estimation in a variety of highly dynamic environments. We also show that dynamic 3D reconstruction can benefit from the camera poses estimated by our RGB-D SLAM approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33001804</pmid><doi>10.1109/TVCG.2020.3028218</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2671-4170</orcidid><orcidid>https://orcid.org/0000-0002-9197-346X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2022-04, Vol.28 (4), p.1745-1757 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_ieee_primary_9210559 |
source | IEEE Electronic Library (IEL) |
subjects | Augmented reality Cameras Conditional random fields Consistency dynamic SLAM Dynamics graph-cut RANSAC long-term consistency Pose estimation Reconstruction RGB-D SLAM Robustness Simultaneous localization and mapping Three-dimensional displays Trajectory analysis Visualization |
title | Accurate Dynamic SLAM Using CRF-Based Long-Term Consistency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Dynamic%20SLAM%20Using%20CRF-Based%20Long-Term%20Consistency&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Du,%20Zheng-Jun&rft.date=2022-04-01&rft.volume=28&rft.issue=4&rft.spage=1745&rft.epage=1757&rft.pages=1745-1757&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2020.3028218&rft_dat=%3Cproquest_RIE%3E2633042519%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633042519&rft_id=info:pmid/33001804&rft_ieee_id=9210559&rfr_iscdi=true |