Infinite Bayesian Max-Margin Discriminant Projection

In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2022-05, Vol.52 (5), p.3936-3946
Hauptverfasser: Wen, Wei, Chen, Bo, Cao, Xuefei, Zhang, Xuefeng, Wang, Zhengjue, Liu, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3946
container_issue 5
container_start_page 3936
container_title IEEE transactions on cybernetics
container_volume 52
creator Wen, Wei
Chen, Bo
Cao, Xuefei
Zhang, Xuefeng
Wang, Zhengjue
Liu, Hongwei
description In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem, for example, the underlying number of local regions. In each local region, our model jointly learns a discriminative subspace and the corresponding classifier. Under this framework, iMMLDP combines dimensionality reduction, clustering, and classification in a principled way. Moreover, to deal with more complex data, for example, a local nonlinear separable structure, we extend the linear projection to a nonlinear case based on the kernel trick and develop an infinite kernel max-margin discriminant projection (iKMMDP) model. Thanks to the conjugate property, the parameters in these two models can be inferred efficiently via the Gibbs sampler. Finally, we implement our models on synthesized and real-world data, including multimodally distributed datasets and measured radar image data, to validate their efficiency and effectiveness.
doi_str_mv 10.1109/TCYB.2020.3017638
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9208802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9208802</ieee_id><sourcerecordid>2667016681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-9914859643edf86a177cedfc1adfcb2f2095aa17c5d037f4861241c33bf06f8c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMottT-ABGk4MXL1nxtkj1q_Sq06KEePIU0TSSlzdZkF-y_d0prDwaSGSbPTN68CF0SPCQEV3ez0efDkGKKhwwTKZg6QV1KhCooleXpMReyg_o5LzEsBaVKnaMOo1VFYHcRH0cfYmjc4MFsXQ4mDqbmp5ia9BXi4DFkm8I6RBObwXuql842oY4X6MybVXb9Q-yhj-en2ei1mLy9jEf3k8KCpKaAN7gqK8GZW3glDJHSQmaJgWNOPcVVaaBqywVm0nMlCOXEMjb3WHhlWQ_d7uduUv3dutzoNQhyq5WJrm6zppzLkivOGKA3_9Bl3aYI6jQVQmIihCJAkT1lU51zcl5v4HsmbTXBeueq3rmqd67qg6vQc32Y3M7XbnHs-PMQgKs9EJxzx-uKYqUwZb9t8nku</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667016681</pqid></control><display><type>article</type><title>Infinite Bayesian Max-Margin Discriminant Projection</title><source>IEEE Electronic Library (IEL)</source><creator>Wen, Wei ; Chen, Bo ; Cao, Xuefei ; Zhang, Xuefeng ; Wang, Zhengjue ; Liu, Hongwei</creator><creatorcontrib>Wen, Wei ; Chen, Bo ; Cao, Xuefei ; Zhang, Xuefeng ; Wang, Zhengjue ; Liu, Hongwei</creatorcontrib><description>In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem, for example, the underlying number of local regions. In each local region, our model jointly learns a discriminative subspace and the corresponding classifier. Under this framework, iMMLDP combines dimensionality reduction, clustering, and classification in a principled way. Moreover, to deal with more complex data, for example, a local nonlinear separable structure, we extend the linear projection to a nonlinear case based on the kernel trick and develop an infinite kernel max-margin discriminant projection (iKMMDP) model. Thanks to the conjugate property, the parameters in these two models can be inferred efficiently via the Gibbs sampler. Finally, we implement our models on synthesized and real-world data, including multimodally distributed datasets and measured radar image data, to validate their efficiency and effectiveness.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2020.3017638</identifier><identifier>PMID: 32991299</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes methods ; Bayesian analysis ; Clustering ; Data models ; Dimensionality reduction ; Dirichlet process (DP) mixture ; Kernel ; Kernels ; large margin ; Mathematical model ; Projection ; Radar imaging ; Reduction ; regularized Bayesian ; supervised feature extraction ; Support vector machines ; Task analysis</subject><ispartof>IEEE transactions on cybernetics, 2022-05, Vol.52 (5), p.3936-3946</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-9914859643edf86a177cedfc1adfcb2f2095aa17c5d037f4861241c33bf06f8c3</cites><orcidid>0000-0003-4046-163X ; 0000-0001-5151-9388 ; 0000-0002-1846-495X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9208802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9208802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32991299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Wei</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Cao, Xuefei</creatorcontrib><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Wang, Zhengjue</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><title>Infinite Bayesian Max-Margin Discriminant Projection</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem, for example, the underlying number of local regions. In each local region, our model jointly learns a discriminative subspace and the corresponding classifier. Under this framework, iMMLDP combines dimensionality reduction, clustering, and classification in a principled way. Moreover, to deal with more complex data, for example, a local nonlinear separable structure, we extend the linear projection to a nonlinear case based on the kernel trick and develop an infinite kernel max-margin discriminant projection (iKMMDP) model. Thanks to the conjugate property, the parameters in these two models can be inferred efficiently via the Gibbs sampler. Finally, we implement our models on synthesized and real-world data, including multimodally distributed datasets and measured radar image data, to validate their efficiency and effectiveness.</description><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Clustering</subject><subject>Data models</subject><subject>Dimensionality reduction</subject><subject>Dirichlet process (DP) mixture</subject><subject>Kernel</subject><subject>Kernels</subject><subject>large margin</subject><subject>Mathematical model</subject><subject>Projection</subject><subject>Radar imaging</subject><subject>Reduction</subject><subject>regularized Bayesian</subject><subject>supervised feature extraction</subject><subject>Support vector machines</subject><subject>Task analysis</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMottT-ABGk4MXL1nxtkj1q_Sq06KEePIU0TSSlzdZkF-y_d0prDwaSGSbPTN68CF0SPCQEV3ez0efDkGKKhwwTKZg6QV1KhCooleXpMReyg_o5LzEsBaVKnaMOo1VFYHcRH0cfYmjc4MFsXQ4mDqbmp5ia9BXi4DFkm8I6RBObwXuql842oY4X6MybVXb9Q-yhj-en2ei1mLy9jEf3k8KCpKaAN7gqK8GZW3glDJHSQmaJgWNOPcVVaaBqywVm0nMlCOXEMjb3WHhlWQ_d7uduUv3dutzoNQhyq5WJrm6zppzLkivOGKA3_9Bl3aYI6jQVQmIihCJAkT1lU51zcl5v4HsmbTXBeueq3rmqd67qg6vQc32Y3M7XbnHs-PMQgKs9EJxzx-uKYqUwZb9t8nku</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wen, Wei</creator><creator>Chen, Bo</creator><creator>Cao, Xuefei</creator><creator>Zhang, Xuefeng</creator><creator>Wang, Zhengjue</creator><creator>Liu, Hongwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4046-163X</orcidid><orcidid>https://orcid.org/0000-0001-5151-9388</orcidid><orcidid>https://orcid.org/0000-0002-1846-495X</orcidid></search><sort><creationdate>20220501</creationdate><title>Infinite Bayesian Max-Margin Discriminant Projection</title><author>Wen, Wei ; Chen, Bo ; Cao, Xuefei ; Zhang, Xuefeng ; Wang, Zhengjue ; Liu, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-9914859643edf86a177cedfc1adfcb2f2095aa17c5d037f4861241c33bf06f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Clustering</topic><topic>Data models</topic><topic>Dimensionality reduction</topic><topic>Dirichlet process (DP) mixture</topic><topic>Kernel</topic><topic>Kernels</topic><topic>large margin</topic><topic>Mathematical model</topic><topic>Projection</topic><topic>Radar imaging</topic><topic>Reduction</topic><topic>regularized Bayesian</topic><topic>supervised feature extraction</topic><topic>Support vector machines</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Wei</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Cao, Xuefei</creatorcontrib><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Wang, Zhengjue</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen, Wei</au><au>Chen, Bo</au><au>Cao, Xuefei</au><au>Zhang, Xuefeng</au><au>Wang, Zhengjue</au><au>Liu, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite Bayesian Max-Margin Discriminant Projection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>52</volume><issue>5</issue><spage>3936</spage><epage>3946</epage><pages>3936-3946</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem, for example, the underlying number of local regions. In each local region, our model jointly learns a discriminative subspace and the corresponding classifier. Under this framework, iMMLDP combines dimensionality reduction, clustering, and classification in a principled way. Moreover, to deal with more complex data, for example, a local nonlinear separable structure, we extend the linear projection to a nonlinear case based on the kernel trick and develop an infinite kernel max-margin discriminant projection (iKMMDP) model. Thanks to the conjugate property, the parameters in these two models can be inferred efficiently via the Gibbs sampler. Finally, we implement our models on synthesized and real-world data, including multimodally distributed datasets and measured radar image data, to validate their efficiency and effectiveness.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32991299</pmid><doi>10.1109/TCYB.2020.3017638</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4046-163X</orcidid><orcidid>https://orcid.org/0000-0001-5151-9388</orcidid><orcidid>https://orcid.org/0000-0002-1846-495X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-05, Vol.52 (5), p.3936-3946
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_9208802
source IEEE Electronic Library (IEL)
subjects Bayes methods
Bayesian analysis
Clustering
Data models
Dimensionality reduction
Dirichlet process (DP) mixture
Kernel
Kernels
large margin
Mathematical model
Projection
Radar imaging
Reduction
regularized Bayesian
supervised feature extraction
Support vector machines
Task analysis
title Infinite Bayesian Max-Margin Discriminant Projection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20Bayesian%20Max-Margin%20Discriminant%20Projection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wen,%20Wei&rft.date=2022-05-01&rft.volume=52&rft.issue=5&rft.spage=3936&rft.epage=3946&rft.pages=3936-3946&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2020.3017638&rft_dat=%3Cproquest_RIE%3E2667016681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667016681&rft_id=info:pmid/32991299&rft_ieee_id=9208802&rfr_iscdi=true