Infinite Bayesian Max-Margin Discriminant Projection
In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2022-05, Vol.52 (5), p.3936-3946 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3946 |
---|---|
container_issue | 5 |
container_start_page | 3936 |
container_title | IEEE transactions on cybernetics |
container_volume | 52 |
creator | Wen, Wei Chen, Bo Cao, Xuefei Zhang, Xuefeng Wang, Zhengjue Liu, Hongwei |
description | In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem, for example, the underlying number of local regions. In each local region, our model jointly learns a discriminative subspace and the corresponding classifier. Under this framework, iMMLDP combines dimensionality reduction, clustering, and classification in a principled way. Moreover, to deal with more complex data, for example, a local nonlinear separable structure, we extend the linear projection to a nonlinear case based on the kernel trick and develop an infinite kernel max-margin discriminant projection (iKMMDP) model. Thanks to the conjugate property, the parameters in these two models can be inferred efficiently via the Gibbs sampler. Finally, we implement our models on synthesized and real-world data, including multimodally distributed datasets and measured radar image data, to validate their efficiency and effectiveness. |
doi_str_mv | 10.1109/TCYB.2020.3017638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9208802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9208802</ieee_id><sourcerecordid>2667016681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-9914859643edf86a177cedfc1adfcb2f2095aa17c5d037f4861241c33bf06f8c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMottT-ABGk4MXL1nxtkj1q_Sq06KEePIU0TSSlzdZkF-y_d0prDwaSGSbPTN68CF0SPCQEV3ez0efDkGKKhwwTKZg6QV1KhCooleXpMReyg_o5LzEsBaVKnaMOo1VFYHcRH0cfYmjc4MFsXQ4mDqbmp5ia9BXi4DFkm8I6RBObwXuql842oY4X6MybVXb9Q-yhj-en2ei1mLy9jEf3k8KCpKaAN7gqK8GZW3glDJHSQmaJgWNOPcVVaaBqywVm0nMlCOXEMjb3WHhlWQ_d7uduUv3dutzoNQhyq5WJrm6zppzLkivOGKA3_9Bl3aYI6jQVQmIihCJAkT1lU51zcl5v4HsmbTXBeueq3rmqd67qg6vQc32Y3M7XbnHs-PMQgKs9EJxzx-uKYqUwZb9t8nku</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667016681</pqid></control><display><type>article</type><title>Infinite Bayesian Max-Margin Discriminant Projection</title><source>IEEE Electronic Library (IEL)</source><creator>Wen, Wei ; Chen, Bo ; Cao, Xuefei ; Zhang, Xuefeng ; Wang, Zhengjue ; Liu, Hongwei</creator><creatorcontrib>Wen, Wei ; Chen, Bo ; Cao, Xuefei ; Zhang, Xuefeng ; Wang, Zhengjue ; Liu, Hongwei</creatorcontrib><description>In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem, for example, the underlying number of local regions. In each local region, our model jointly learns a discriminative subspace and the corresponding classifier. Under this framework, iMMLDP combines dimensionality reduction, clustering, and classification in a principled way. Moreover, to deal with more complex data, for example, a local nonlinear separable structure, we extend the linear projection to a nonlinear case based on the kernel trick and develop an infinite kernel max-margin discriminant projection (iKMMDP) model. Thanks to the conjugate property, the parameters in these two models can be inferred efficiently via the Gibbs sampler. Finally, we implement our models on synthesized and real-world data, including multimodally distributed datasets and measured radar image data, to validate their efficiency and effectiveness.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2020.3017638</identifier><identifier>PMID: 32991299</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayes methods ; Bayesian analysis ; Clustering ; Data models ; Dimensionality reduction ; Dirichlet process (DP) mixture ; Kernel ; Kernels ; large margin ; Mathematical model ; Projection ; Radar imaging ; Reduction ; regularized Bayesian ; supervised feature extraction ; Support vector machines ; Task analysis</subject><ispartof>IEEE transactions on cybernetics, 2022-05, Vol.52 (5), p.3936-3946</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-9914859643edf86a177cedfc1adfcb2f2095aa17c5d037f4861241c33bf06f8c3</cites><orcidid>0000-0003-4046-163X ; 0000-0001-5151-9388 ; 0000-0002-1846-495X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9208802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9208802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32991299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Wei</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Cao, Xuefei</creatorcontrib><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Wang, Zhengjue</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><title>Infinite Bayesian Max-Margin Discriminant Projection</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem, for example, the underlying number of local regions. In each local region, our model jointly learns a discriminative subspace and the corresponding classifier. Under this framework, iMMLDP combines dimensionality reduction, clustering, and classification in a principled way. Moreover, to deal with more complex data, for example, a local nonlinear separable structure, we extend the linear projection to a nonlinear case based on the kernel trick and develop an infinite kernel max-margin discriminant projection (iKMMDP) model. Thanks to the conjugate property, the parameters in these two models can be inferred efficiently via the Gibbs sampler. Finally, we implement our models on synthesized and real-world data, including multimodally distributed datasets and measured radar image data, to validate their efficiency and effectiveness.</description><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Clustering</subject><subject>Data models</subject><subject>Dimensionality reduction</subject><subject>Dirichlet process (DP) mixture</subject><subject>Kernel</subject><subject>Kernels</subject><subject>large margin</subject><subject>Mathematical model</subject><subject>Projection</subject><subject>Radar imaging</subject><subject>Reduction</subject><subject>regularized Bayesian</subject><subject>supervised feature extraction</subject><subject>Support vector machines</subject><subject>Task analysis</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMottT-ABGk4MXL1nxtkj1q_Sq06KEePIU0TSSlzdZkF-y_d0prDwaSGSbPTN68CF0SPCQEV3ez0efDkGKKhwwTKZg6QV1KhCooleXpMReyg_o5LzEsBaVKnaMOo1VFYHcRH0cfYmjc4MFsXQ4mDqbmp5ia9BXi4DFkm8I6RBObwXuql842oY4X6MybVXb9Q-yhj-en2ei1mLy9jEf3k8KCpKaAN7gqK8GZW3glDJHSQmaJgWNOPcVVaaBqywVm0nMlCOXEMjb3WHhlWQ_d7uduUv3dutzoNQhyq5WJrm6zppzLkivOGKA3_9Bl3aYI6jQVQmIihCJAkT1lU51zcl5v4HsmbTXBeueq3rmqd67qg6vQc32Y3M7XbnHs-PMQgKs9EJxzx-uKYqUwZb9t8nku</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wen, Wei</creator><creator>Chen, Bo</creator><creator>Cao, Xuefei</creator><creator>Zhang, Xuefeng</creator><creator>Wang, Zhengjue</creator><creator>Liu, Hongwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4046-163X</orcidid><orcidid>https://orcid.org/0000-0001-5151-9388</orcidid><orcidid>https://orcid.org/0000-0002-1846-495X</orcidid></search><sort><creationdate>20220501</creationdate><title>Infinite Bayesian Max-Margin Discriminant Projection</title><author>Wen, Wei ; Chen, Bo ; Cao, Xuefei ; Zhang, Xuefeng ; Wang, Zhengjue ; Liu, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-9914859643edf86a177cedfc1adfcb2f2095aa17c5d037f4861241c33bf06f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Clustering</topic><topic>Data models</topic><topic>Dimensionality reduction</topic><topic>Dirichlet process (DP) mixture</topic><topic>Kernel</topic><topic>Kernels</topic><topic>large margin</topic><topic>Mathematical model</topic><topic>Projection</topic><topic>Radar imaging</topic><topic>Reduction</topic><topic>regularized Bayesian</topic><topic>supervised feature extraction</topic><topic>Support vector machines</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Wei</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Cao, Xuefei</creatorcontrib><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Wang, Zhengjue</creatorcontrib><creatorcontrib>Liu, Hongwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen, Wei</au><au>Chen, Bo</au><au>Cao, Xuefei</au><au>Zhang, Xuefeng</au><au>Wang, Zhengjue</au><au>Liu, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite Bayesian Max-Margin Discriminant Projection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>52</volume><issue>5</issue><spage>3936</spage><epage>3946</epage><pages>3936-3946</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this article, considering the supervised dimensionality reduction, we first propose a model, called infinite Bayesian max-margin linear discriminant projection (iMMLDP), by assembling a set of local regions, where we make use of Bayesian nonparametric priors to handle the model selection problem, for example, the underlying number of local regions. In each local region, our model jointly learns a discriminative subspace and the corresponding classifier. Under this framework, iMMLDP combines dimensionality reduction, clustering, and classification in a principled way. Moreover, to deal with more complex data, for example, a local nonlinear separable structure, we extend the linear projection to a nonlinear case based on the kernel trick and develop an infinite kernel max-margin discriminant projection (iKMMDP) model. Thanks to the conjugate property, the parameters in these two models can be inferred efficiently via the Gibbs sampler. Finally, we implement our models on synthesized and real-world data, including multimodally distributed datasets and measured radar image data, to validate their efficiency and effectiveness.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32991299</pmid><doi>10.1109/TCYB.2020.3017638</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4046-163X</orcidid><orcidid>https://orcid.org/0000-0001-5151-9388</orcidid><orcidid>https://orcid.org/0000-0002-1846-495X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2022-05, Vol.52 (5), p.3936-3946 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_9208802 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes methods Bayesian analysis Clustering Data models Dimensionality reduction Dirichlet process (DP) mixture Kernel Kernels large margin Mathematical model Projection Radar imaging Reduction regularized Bayesian supervised feature extraction Support vector machines Task analysis |
title | Infinite Bayesian Max-Margin Discriminant Projection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20Bayesian%20Max-Margin%20Discriminant%20Projection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Wen,%20Wei&rft.date=2022-05-01&rft.volume=52&rft.issue=5&rft.spage=3936&rft.epage=3946&rft.pages=3936-3946&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2020.3017638&rft_dat=%3Cproquest_RIE%3E2667016681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667016681&rft_id=info:pmid/32991299&rft_ieee_id=9208802&rfr_iscdi=true |