FLOP-Reduction Through Memory Allocations Within CNN for Hyperspectral Image Classification

Convolutional neural networks (CNNs) have proven to be a powerful tool for the classification of hyperspectral images (HSIs). The CNN kernels are able to naturally include spatial information to smooth out the spectral variability and the noise present in HSI data. However, these kernels are compose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2021-07, Vol.59 (7), p.5938-5952
Hauptverfasser: Paoletti, Mercedes E., Haut, Juan M., Tao, Xuanwen, Plaza, Javier, Plaza, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5952
container_issue 7
container_start_page 5938
container_title IEEE transactions on geoscience and remote sensing
container_volume 59
creator Paoletti, Mercedes E.
Haut, Juan M.
Tao, Xuanwen
Plaza, Javier
Plaza, Antonio
description Convolutional neural networks (CNNs) have proven to be a powerful tool for the classification of hyperspectral images (HSIs). The CNN kernels are able to naturally include spatial information to smooth out the spectral variability and the noise present in HSI data. However, these kernels are composed of a large number of learning parameters that must be correctly adjusted to achieve good performance. This forces the model to consume a large amount of training data, being prone to overfitting when limited labeled samples are available. In addition, the execution of kernels is computationally very expensive, increasing quadratically with respect to the size of the convolution filter. This significantly reduces the performance of the model. To overcome the aforementioned limitations, this work presents a new few-parameter CNN (based on shift operations) for HSI classification that dramatically reduces both the number of parameters and the computational complexity of the model in terms of floating-point operations (FLOPs). The operational module combines a shift kernel (which adjusts the input data in particular directions without involving any parameters nor FLOPs) with pointwise convolutions that perform the feature extraction stage. The newly developed shift-based CNN has been employed to conduct HSI classification over five widely used and challenging data sets, achieving very promising results in terms of computational performance and classification accuracy.
doi_str_mv 10.1109/TGRS.2020.3024730
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9208716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9208716</ieee_id><sourcerecordid>2544297328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1c3186d3d49dfc31cd68286e56f2292275bddbc9724ce0f16c96b9a3c97beac23</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw7EidNm-NUsQ9pbGgMceAQtWm6deqWkrSH_XtaFXGyZT-vLT0IPVIyoZTIl918-zEBAmTCCPCIkSs0omEYB0Rwfo1GhEoRQCzhFt15fySE8pBGI_Q9W23eg63JW92U9ox3B2fb_QG_mZN1FzytKqvTfuPxV9kcyjNO1mtcWIcXl9o4XxvduLTCy1O6NzipUu_Lohwi9-imSCtvHv7qGH3OXnfJIlht5stkugo0Y6IJqGY0FjnLucyLrte5iCEWJhQFgASIwizPMy0j4NqQggotRSZT1k0yk2pgY_Q83K2d_WmNb9TRtu7cvVQQcg4yYhB3FB0o7az3zhSqduUpdRdFieodqt6h6h2qP4dd5mnIlMaYf14CiSMq2C9hkW2d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544297328</pqid></control><display><type>article</type><title>FLOP-Reduction Through Memory Allocations Within CNN for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Paoletti, Mercedes E. ; Haut, Juan M. ; Tao, Xuanwen ; Plaza, Javier ; Plaza, Antonio</creator><creatorcontrib>Paoletti, Mercedes E. ; Haut, Juan M. ; Tao, Xuanwen ; Plaza, Javier ; Plaza, Antonio</creatorcontrib><description>Convolutional neural networks (CNNs) have proven to be a powerful tool for the classification of hyperspectral images (HSIs). The CNN kernels are able to naturally include spatial information to smooth out the spectral variability and the noise present in HSI data. However, these kernels are composed of a large number of learning parameters that must be correctly adjusted to achieve good performance. This forces the model to consume a large amount of training data, being prone to overfitting when limited labeled samples are available. In addition, the execution of kernels is computationally very expensive, increasing quadratically with respect to the size of the convolution filter. This significantly reduces the performance of the model. To overcome the aforementioned limitations, this work presents a new few-parameter CNN (based on shift operations) for HSI classification that dramatically reduces both the number of parameters and the computational complexity of the model in terms of floating-point operations (FLOPs). The operational module combines a shift kernel (which adjusts the input data in particular directions without involving any parameters nor FLOPs) with pointwise convolutions that perform the feature extraction stage. The newly developed shift-based CNN has been employed to conduct HSI classification over five widely used and challenging data sets, achieving very promising results in terms of computational performance and classification accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3024730</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Allocations ; Artificial neural networks ; Classification ; Computational modeling ; Computer applications ; Convolution ; convolutional neural networks (CNNs) ; Data ; Data models ; Feature extraction ; Floating point arithmetic ; hyperspectral images (HSIs) ; Hyperspectral imaging ; Image classification ; Kernel ; Kernels ; Mathematical models ; Neural networks ; Parameters ; shift operation ; Spatial data ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-07, Vol.59 (7), p.5938-5952</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1c3186d3d49dfc31cd68286e56f2292275bddbc9724ce0f16c96b9a3c97beac23</citedby><cites>FETCH-LOGICAL-c336t-1c3186d3d49dfc31cd68286e56f2292275bddbc9724ce0f16c96b9a3c97beac23</cites><orcidid>0000-0003-1093-0079 ; 0000-0001-6701-961X ; 0000-0002-9613-1659 ; 0000-0002-2384-9141 ; 0000-0003-1030-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9208716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9208716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paoletti, Mercedes E.</creatorcontrib><creatorcontrib>Haut, Juan M.</creatorcontrib><creatorcontrib>Tao, Xuanwen</creatorcontrib><creatorcontrib>Plaza, Javier</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><title>FLOP-Reduction Through Memory Allocations Within CNN for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Convolutional neural networks (CNNs) have proven to be a powerful tool for the classification of hyperspectral images (HSIs). The CNN kernels are able to naturally include spatial information to smooth out the spectral variability and the noise present in HSI data. However, these kernels are composed of a large number of learning parameters that must be correctly adjusted to achieve good performance. This forces the model to consume a large amount of training data, being prone to overfitting when limited labeled samples are available. In addition, the execution of kernels is computationally very expensive, increasing quadratically with respect to the size of the convolution filter. This significantly reduces the performance of the model. To overcome the aforementioned limitations, this work presents a new few-parameter CNN (based on shift operations) for HSI classification that dramatically reduces both the number of parameters and the computational complexity of the model in terms of floating-point operations (FLOPs). The operational module combines a shift kernel (which adjusts the input data in particular directions without involving any parameters nor FLOPs) with pointwise convolutions that perform the feature extraction stage. The newly developed shift-based CNN has been employed to conduct HSI classification over five widely used and challenging data sets, achieving very promising results in terms of computational performance and classification accuracy.</description><subject>Allocations</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Convolution</subject><subject>convolutional neural networks (CNNs)</subject><subject>Data</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Floating point arithmetic</subject><subject>hyperspectral images (HSIs)</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>shift operation</subject><subject>Spatial data</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw7EidNm-NUsQ9pbGgMceAQtWm6deqWkrSH_XtaFXGyZT-vLT0IPVIyoZTIl918-zEBAmTCCPCIkSs0omEYB0Rwfo1GhEoRQCzhFt15fySE8pBGI_Q9W23eg63JW92U9ox3B2fb_QG_mZN1FzytKqvTfuPxV9kcyjNO1mtcWIcXl9o4XxvduLTCy1O6NzipUu_Lohwi9-imSCtvHv7qGH3OXnfJIlht5stkugo0Y6IJqGY0FjnLucyLrte5iCEWJhQFgASIwizPMy0j4NqQggotRSZT1k0yk2pgY_Q83K2d_WmNb9TRtu7cvVQQcg4yYhB3FB0o7az3zhSqduUpdRdFieodqt6h6h2qP4dd5mnIlMaYf14CiSMq2C9hkW2d</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Paoletti, Mercedes E.</creator><creator>Haut, Juan M.</creator><creator>Tao, Xuanwen</creator><creator>Plaza, Javier</creator><creator>Plaza, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1093-0079</orcidid><orcidid>https://orcid.org/0000-0001-6701-961X</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0002-2384-9141</orcidid><orcidid>https://orcid.org/0000-0003-1030-3729</orcidid></search><sort><creationdate>20210701</creationdate><title>FLOP-Reduction Through Memory Allocations Within CNN for Hyperspectral Image Classification</title><author>Paoletti, Mercedes E. ; Haut, Juan M. ; Tao, Xuanwen ; Plaza, Javier ; Plaza, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1c3186d3d49dfc31cd68286e56f2292275bddbc9724ce0f16c96b9a3c97beac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Allocations</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Convolution</topic><topic>convolutional neural networks (CNNs)</topic><topic>Data</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Floating point arithmetic</topic><topic>hyperspectral images (HSIs)</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>shift operation</topic><topic>Spatial data</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paoletti, Mercedes E.</creatorcontrib><creatorcontrib>Haut, Juan M.</creatorcontrib><creatorcontrib>Tao, Xuanwen</creatorcontrib><creatorcontrib>Plaza, Javier</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paoletti, Mercedes E.</au><au>Haut, Juan M.</au><au>Tao, Xuanwen</au><au>Plaza, Javier</au><au>Plaza, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FLOP-Reduction Through Memory Allocations Within CNN for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>59</volume><issue>7</issue><spage>5938</spage><epage>5952</epage><pages>5938-5952</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Convolutional neural networks (CNNs) have proven to be a powerful tool for the classification of hyperspectral images (HSIs). The CNN kernels are able to naturally include spatial information to smooth out the spectral variability and the noise present in HSI data. However, these kernels are composed of a large number of learning parameters that must be correctly adjusted to achieve good performance. This forces the model to consume a large amount of training data, being prone to overfitting when limited labeled samples are available. In addition, the execution of kernels is computationally very expensive, increasing quadratically with respect to the size of the convolution filter. This significantly reduces the performance of the model. To overcome the aforementioned limitations, this work presents a new few-parameter CNN (based on shift operations) for HSI classification that dramatically reduces both the number of parameters and the computational complexity of the model in terms of floating-point operations (FLOPs). The operational module combines a shift kernel (which adjusts the input data in particular directions without involving any parameters nor FLOPs) with pointwise convolutions that perform the feature extraction stage. The newly developed shift-based CNN has been employed to conduct HSI classification over five widely used and challenging data sets, achieving very promising results in terms of computational performance and classification accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3024730</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1093-0079</orcidid><orcidid>https://orcid.org/0000-0001-6701-961X</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0002-2384-9141</orcidid><orcidid>https://orcid.org/0000-0003-1030-3729</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2021-07, Vol.59 (7), p.5938-5952
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9208716
source IEEE Electronic Library (IEL)
subjects Allocations
Artificial neural networks
Classification
Computational modeling
Computer applications
Convolution
convolutional neural networks (CNNs)
Data
Data models
Feature extraction
Floating point arithmetic
hyperspectral images (HSIs)
Hyperspectral imaging
Image classification
Kernel
Kernels
Mathematical models
Neural networks
Parameters
shift operation
Spatial data
Training
title FLOP-Reduction Through Memory Allocations Within CNN for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FLOP-Reduction%20Through%20Memory%20Allocations%20Within%20CNN%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Paoletti,%20Mercedes%20E.&rft.date=2021-07-01&rft.volume=59&rft.issue=7&rft.spage=5938&rft.epage=5952&rft.pages=5938-5952&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3024730&rft_dat=%3Cproquest_RIE%3E2544297328%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544297328&rft_id=info:pmid/&rft_ieee_id=9208716&rfr_iscdi=true