Context-Based Data Model for Effective Real-Time Learning Analytics

Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on learning technologies 2020-10, Vol.13 (4), p.790-803
Hauptverfasser: Liu, Kai, Tatinati, Sivanagaraja, Khong, Andy W. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 803
container_issue 4
container_start_page 790
container_title IEEE transactions on learning technologies
container_volume 13
creator Liu, Kai
Tatinati, Sivanagaraja
Khong, Andy W. H.
description Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in latency. In addition, existing data models are inefficient in storing computed results, which are often required for follow-up analysis. These follow-up analyses depend largely on stakeholder objectives, which often impose constraints to the analysis process. In this article, we propose a context-based data model that addresses two challenges associated with learning analytics: the increased processing time due to multiple data granularities required from various stakeholder objectives, and the lack of support for archiving and updating of new information that exist during iterative analysis. We demonstrate how the proposed model can help support analysis and visualization via the XuetangX and ASSISTments datasets. Results show that although our proposed data model requires preprocessing, it requires less time to process queries associated with learning-activity attributes of various granularities compared to existing data models.
doi_str_mv 10.1109/TLT.2020.3027441
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9207969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1282889</ericid><ieee_id>9207969</ieee_id><sourcerecordid>2471919252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e59ee05a31f70f2502cb7439dad610275f859aafad95e430fe3aa9ddd611d72c3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvgggBz6m7s0mTPdYYv4gIEs_LmJ2VlDSpu6nYf29KSvE0A8_7DsPD2KXgMyG4ui2LcgYc-ExySKJIHLGJUFKFQqZw_G8_ZWfeLzmfQ6JgwrKsa3v67cM79GSCe-wxeO0MNYHtXJBbS1Vf_1DwTtiEZb2ioCB0bd1-BYsWm21fV_6cnVhsPF3s55R9PORl9hQWb4_P2aIIKylkH1KsiHiMUtiEW4g5VJ9JJJVBMxfD07FNY4Vo0aiYIsktSURlzECFSaCSU3Yz3l277ntDvtfLbuOGL7yGKBFKKIhhSPExVbnOe0dWr129QrfVguudKj2o0jtVeq9qqFyPFXJ1dYjnLwJSSFM18KuR10R04Ap4ouZK_gGFkW0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471919252</pqid></control><display><type>article</type><title>Context-Based Data Model for Effective Real-Time Learning Analytics</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Kai ; Tatinati, Sivanagaraja ; Khong, Andy W. H.</creator><creatorcontrib>Liu, Kai ; Tatinati, Sivanagaraja ; Khong, Andy W. H.</creatorcontrib><description>Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in latency. In addition, existing data models are inefficient in storing computed results, which are often required for follow-up analysis. These follow-up analyses depend largely on stakeholder objectives, which often impose constraints to the analysis process. In this article, we propose a context-based data model that addresses two challenges associated with learning analytics: the increased processing time due to multiple data granularities required from various stakeholder objectives, and the lack of support for archiving and updating of new information that exist during iterative analysis. We demonstrate how the proposed model can help support analysis and visualization via the XuetangX and ASSISTments datasets. Results show that although our proposed data model requires preprocessing, it requires less time to process queries associated with learning-activity attributes of various granularities compared to existing data models.</description><identifier>ISSN: 1939-1382</identifier><identifier>EISSN: 1939-1382</identifier><identifier>EISSN: 2372-0050</identifier><identifier>DOI: 10.1109/TLT.2020.3027441</identifier><identifier>CODEN: ITLTAT</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Archiving ; Barriers ; Context ; Context Effect ; Context modeling ; Data models ; Data Processing ; Data Use ; Heterogeneity ; Instructional Effectiveness ; Iterative methods ; Learning ; Learning Analytics ; Measurement ; multigranular heterogeneous data sources ; Ontologies ; Query processing ; Stakeholders ; Task analysis ; Time Management ; Videos</subject><ispartof>IEEE transactions on learning technologies, 2020-10, Vol.13 (4), p.790-803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e59ee05a31f70f2502cb7439dad610275f859aafad95e430fe3aa9ddd611d72c3</citedby><cites>FETCH-LOGICAL-c313t-e59ee05a31f70f2502cb7439dad610275f859aafad95e430fe3aa9ddd611d72c3</cites><orcidid>0000-0002-0708-4791 ; 0000-0002-7599-5538 ; 0000-0001-9849-3701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9207969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9207969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1282889$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Tatinati, Sivanagaraja</creatorcontrib><creatorcontrib>Khong, Andy W. H.</creatorcontrib><title>Context-Based Data Model for Effective Real-Time Learning Analytics</title><title>IEEE transactions on learning technologies</title><addtitle>TLT</addtitle><description>Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in latency. In addition, existing data models are inefficient in storing computed results, which are often required for follow-up analysis. These follow-up analyses depend largely on stakeholder objectives, which often impose constraints to the analysis process. In this article, we propose a context-based data model that addresses two challenges associated with learning analytics: the increased processing time due to multiple data granularities required from various stakeholder objectives, and the lack of support for archiving and updating of new information that exist during iterative analysis. We demonstrate how the proposed model can help support analysis and visualization via the XuetangX and ASSISTments datasets. Results show that although our proposed data model requires preprocessing, it requires less time to process queries associated with learning-activity attributes of various granularities compared to existing data models.</description><subject>Archiving</subject><subject>Barriers</subject><subject>Context</subject><subject>Context Effect</subject><subject>Context modeling</subject><subject>Data models</subject><subject>Data Processing</subject><subject>Data Use</subject><subject>Heterogeneity</subject><subject>Instructional Effectiveness</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Learning Analytics</subject><subject>Measurement</subject><subject>multigranular heterogeneous data sources</subject><subject>Ontologies</subject><subject>Query processing</subject><subject>Stakeholders</subject><subject>Task analysis</subject><subject>Time Management</subject><subject>Videos</subject><issn>1939-1382</issn><issn>1939-1382</issn><issn>2372-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvgggBz6m7s0mTPdYYv4gIEs_LmJ2VlDSpu6nYf29KSvE0A8_7DsPD2KXgMyG4ui2LcgYc-ExySKJIHLGJUFKFQqZw_G8_ZWfeLzmfQ6JgwrKsa3v67cM79GSCe-wxeO0MNYHtXJBbS1Vf_1DwTtiEZb2ioCB0bd1-BYsWm21fV_6cnVhsPF3s55R9PORl9hQWb4_P2aIIKylkH1KsiHiMUtiEW4g5VJ9JJJVBMxfD07FNY4Vo0aiYIsktSURlzECFSaCSU3Yz3l277ntDvtfLbuOGL7yGKBFKKIhhSPExVbnOe0dWr129QrfVguudKj2o0jtVeq9qqFyPFXJ1dYjnLwJSSFM18KuR10R04Ap4ouZK_gGFkW0Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Liu, Kai</creator><creator>Tatinati, Sivanagaraja</creator><creator>Khong, Andy W. H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers, Inc</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0708-4791</orcidid><orcidid>https://orcid.org/0000-0002-7599-5538</orcidid><orcidid>https://orcid.org/0000-0001-9849-3701</orcidid></search><sort><creationdate>20201001</creationdate><title>Context-Based Data Model for Effective Real-Time Learning Analytics</title><author>Liu, Kai ; Tatinati, Sivanagaraja ; Khong, Andy W. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e59ee05a31f70f2502cb7439dad610275f859aafad95e430fe3aa9ddd611d72c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Archiving</topic><topic>Barriers</topic><topic>Context</topic><topic>Context Effect</topic><topic>Context modeling</topic><topic>Data models</topic><topic>Data Processing</topic><topic>Data Use</topic><topic>Heterogeneity</topic><topic>Instructional Effectiveness</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Learning Analytics</topic><topic>Measurement</topic><topic>multigranular heterogeneous data sources</topic><topic>Ontologies</topic><topic>Query processing</topic><topic>Stakeholders</topic><topic>Task analysis</topic><topic>Time Management</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Tatinati, Sivanagaraja</creatorcontrib><creatorcontrib>Khong, Andy W. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>IEEE transactions on learning technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Kai</au><au>Tatinati, Sivanagaraja</au><au>Khong, Andy W. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1282889</ericid><atitle>Context-Based Data Model for Effective Real-Time Learning Analytics</atitle><jtitle>IEEE transactions on learning technologies</jtitle><stitle>TLT</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>790</spage><epage>803</epage><pages>790-803</pages><issn>1939-1382</issn><eissn>1939-1382</eissn><eissn>2372-0050</eissn><coden>ITLTAT</coden><abstract>Activity-centric data gather feedback on students' learning to enhance learning effectiveness. The heterogeneity and multigranularity of such data require existing data models to perform complex on-the-fly computation when responding to queries of specific granularity. This, in turn, results in latency. In addition, existing data models are inefficient in storing computed results, which are often required for follow-up analysis. These follow-up analyses depend largely on stakeholder objectives, which often impose constraints to the analysis process. In this article, we propose a context-based data model that addresses two challenges associated with learning analytics: the increased processing time due to multiple data granularities required from various stakeholder objectives, and the lack of support for archiving and updating of new information that exist during iterative analysis. We demonstrate how the proposed model can help support analysis and visualization via the XuetangX and ASSISTments datasets. Results show that although our proposed data model requires preprocessing, it requires less time to process queries associated with learning-activity attributes of various granularities compared to existing data models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TLT.2020.3027441</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0708-4791</orcidid><orcidid>https://orcid.org/0000-0002-7599-5538</orcidid><orcidid>https://orcid.org/0000-0001-9849-3701</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1382
ispartof IEEE transactions on learning technologies, 2020-10, Vol.13 (4), p.790-803
issn 1939-1382
1939-1382
2372-0050
language eng
recordid cdi_ieee_primary_9207969
source IEEE Electronic Library (IEL)
subjects Archiving
Barriers
Context
Context Effect
Context modeling
Data models
Data Processing
Data Use
Heterogeneity
Instructional Effectiveness
Iterative methods
Learning
Learning Analytics
Measurement
multigranular heterogeneous data sources
Ontologies
Query processing
Stakeholders
Task analysis
Time Management
Videos
title Context-Based Data Model for Effective Real-Time Learning Analytics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-Based%20Data%20Model%20for%20Effective%20Real-Time%20Learning%20Analytics&rft.jtitle=IEEE%20transactions%20on%20learning%20technologies&rft.au=Liu,%20Kai&rft.date=2020-10-01&rft.volume=13&rft.issue=4&rft.spage=790&rft.epage=803&rft.pages=790-803&rft.issn=1939-1382&rft.eissn=1939-1382&rft.coden=ITLTAT&rft_id=info:doi/10.1109/TLT.2020.3027441&rft_dat=%3Cproquest_RIE%3E2471919252%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471919252&rft_id=info:pmid/&rft_ericid=EJ1282889&rft_ieee_id=9207969&rfr_iscdi=true