A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures
This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a sm...
Gespeichert in:
Veröffentlicht in: | IEEE microwave and wireless components letters 2020-11, Vol.30 (11), p.1045-1048 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1048 |
---|---|
container_issue | 11 |
container_start_page | 1045 |
container_title | IEEE microwave and wireless components letters |
container_volume | 30 |
creator | Shu, Minjie Guo, Cheng Shang, Xiaobang Zhu, Weijun Zhang, Anxue |
description | This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a small footprint of the whole device, gap waveguide structures are employed to reduce the group velocity of the wave inside the waveguide. Additionally, the waveguide is formed of walls with low conductivity metal, yielding much higher conductor loss. The waveguide load is designed to have a spiral shape for further reduction on size. The design is demonstrated at Ka -band (26.5-40 GHz) using 3-D printing technology. The measured S_{11} of the prototype device is better than −20 dB across the entire Ka -band. This good result validates the proposed concept and reveals that the new lossy wall-based load can be a promising alternative to conventional designs particularly for applications involving high power or demanding superior stability over time. |
doi_str_mv | 10.1109/LMWC.2020.3022665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9204470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204470</ieee_id><sourcerecordid>2460154042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-15c9d419313dc928ff53e39afad0678a395e06ed22a3fddcd81f4ad230d913ce3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k0m2m2O7-IVbPKj0GGKS1Rbt1mRX6L83S4uneQee-eBh7BJhggjqpl4sqwkHDhMCzotCHrERSlnmOC3E8ZAJcyRQp-wsxjUAilLgiFWz7Mnkc7Nx2XLl_PsQFqazn95ldWtcNjcxxXaTuhh32dL8-o8-kdlLF3rb9cHHc3bSmK_oLw51zN7ubl-rh7x-vn-sZnVuuaIuR2mVE6gIyVnFy6aR5EmZxjgopqUhJT0U3nFuqHHOuhIbYRwncArJehqz6_3ebWh_eh87vW77sEknNRcFoBQgeKJwT9mQPg6-0duw-jZhpxH04EoPrvTgSh9cpZmr_czKe__PKw5CTIH-AJEpY6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460154042</pqid></control><display><type>article</type><title>A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Shu, Minjie ; Guo, Cheng ; Shang, Xiaobang ; Zhu, Weijun ; Zhang, Anxue</creator><creatorcontrib>Shu, Minjie ; Guo, Cheng ; Shang, Xiaobang ; Zhu, Weijun ; Zhang, Anxue</creatorcontrib><description>This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a small footprint of the whole device, gap waveguide structures are employed to reduce the group velocity of the wave inside the waveguide. Additionally, the waveguide is formed of walls with low conductivity metal, yielding much higher conductor loss. The waveguide load is designed to have a spiral shape for further reduction on size. The design is demonstrated at Ka -band (26.5-40 GHz) using 3-D printing technology. The measured <inline-formula> <tex-math notation="LaTeX">S_{11} </tex-math></inline-formula> of the prototype device is better than −20 dB across the entire Ka -band. This good result validates the proposed concept and reveals that the new lossy wall-based load can be a promising alternative to conventional designs particularly for applications involving high power or demanding superior stability over time.</description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2020.3022665</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D printing ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Ka -band loads ; Absorption ; Broadband ; Conductivity ; Conductors ; Design ; gap waveguides (GWs) ; Group velocity ; Load ; Load matching ; Loaded waveguides ; Low conductivity ; Metals ; Pins ; Rectangular waveguides ; Three dimensional printing ; Waveguide components ; waveguide matched loads ; Waveguides</subject><ispartof>IEEE microwave and wireless components letters, 2020-11, Vol.30 (11), p.1045-1048</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-15c9d419313dc928ff53e39afad0678a395e06ed22a3fddcd81f4ad230d913ce3</citedby><cites>FETCH-LOGICAL-c293t-15c9d419313dc928ff53e39afad0678a395e06ed22a3fddcd81f4ad230d913ce3</cites><orcidid>0000-0002-3254-6679 ; 0000-0002-9565-2479 ; 0000-0002-8755-1483 ; 0000-0002-0298-4184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9204470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shu, Minjie</creatorcontrib><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Shang, Xiaobang</creatorcontrib><creatorcontrib>Zhu, Weijun</creatorcontrib><creatorcontrib>Zhang, Anxue</creatorcontrib><title>A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description>This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a small footprint of the whole device, gap waveguide structures are employed to reduce the group velocity of the wave inside the waveguide. Additionally, the waveguide is formed of walls with low conductivity metal, yielding much higher conductor loss. The waveguide load is designed to have a spiral shape for further reduction on size. The design is demonstrated at Ka -band (26.5-40 GHz) using 3-D printing technology. The measured <inline-formula> <tex-math notation="LaTeX">S_{11} </tex-math></inline-formula> of the prototype device is better than −20 dB across the entire Ka -band. This good result validates the proposed concept and reveals that the new lossy wall-based load can be a promising alternative to conventional designs particularly for applications involving high power or demanding superior stability over time.</description><subject>3-D printing</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Ka -band loads</subject><subject>Absorption</subject><subject>Broadband</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Design</subject><subject>gap waveguides (GWs)</subject><subject>Group velocity</subject><subject>Load</subject><subject>Load matching</subject><subject>Loaded waveguides</subject><subject>Low conductivity</subject><subject>Metals</subject><subject>Pins</subject><subject>Rectangular waveguides</subject><subject>Three dimensional printing</subject><subject>Waveguide components</subject><subject>waveguide matched loads</subject><subject>Waveguides</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k0m2m2O7-IVbPKj0GGKS1Rbt1mRX6L83S4uneQee-eBh7BJhggjqpl4sqwkHDhMCzotCHrERSlnmOC3E8ZAJcyRQp-wsxjUAilLgiFWz7Mnkc7Nx2XLl_PsQFqazn95ldWtcNjcxxXaTuhh32dL8-o8-kdlLF3rb9cHHc3bSmK_oLw51zN7ubl-rh7x-vn-sZnVuuaIuR2mVE6gIyVnFy6aR5EmZxjgopqUhJT0U3nFuqHHOuhIbYRwncArJehqz6_3ebWh_eh87vW77sEknNRcFoBQgeKJwT9mQPg6-0duw-jZhpxH04EoPrvTgSh9cpZmr_czKe__PKw5CTIH-AJEpY6g</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Shu, Minjie</creator><creator>Guo, Cheng</creator><creator>Shang, Xiaobang</creator><creator>Zhu, Weijun</creator><creator>Zhang, Anxue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3254-6679</orcidid><orcidid>https://orcid.org/0000-0002-9565-2479</orcidid><orcidid>https://orcid.org/0000-0002-8755-1483</orcidid><orcidid>https://orcid.org/0000-0002-0298-4184</orcidid></search><sort><creationdate>20201101</creationdate><title>A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures</title><author>Shu, Minjie ; Guo, Cheng ; Shang, Xiaobang ; Zhu, Weijun ; Zhang, Anxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-15c9d419313dc928ff53e39afad0678a395e06ed22a3fddcd81f4ad230d913ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printing</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Ka -band loads</topic><topic>Absorption</topic><topic>Broadband</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Design</topic><topic>gap waveguides (GWs)</topic><topic>Group velocity</topic><topic>Load</topic><topic>Load matching</topic><topic>Loaded waveguides</topic><topic>Low conductivity</topic><topic>Metals</topic><topic>Pins</topic><topic>Rectangular waveguides</topic><topic>Three dimensional printing</topic><topic>Waveguide components</topic><topic>waveguide matched loads</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Minjie</creatorcontrib><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Shang, Xiaobang</creatorcontrib><creatorcontrib>Zhu, Weijun</creatorcontrib><creatorcontrib>Zhang, Anxue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu, Minjie</au><au>Guo, Cheng</au><au>Shang, Xiaobang</au><au>Zhu, Weijun</au><au>Zhang, Anxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>1045</spage><epage>1048</epage><pages>1045-1048</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract>This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a small footprint of the whole device, gap waveguide structures are employed to reduce the group velocity of the wave inside the waveguide. Additionally, the waveguide is formed of walls with low conductivity metal, yielding much higher conductor loss. The waveguide load is designed to have a spiral shape for further reduction on size. The design is demonstrated at Ka -band (26.5-40 GHz) using 3-D printing technology. The measured <inline-formula> <tex-math notation="LaTeX">S_{11} </tex-math></inline-formula> of the prototype device is better than −20 dB across the entire Ka -band. This good result validates the proposed concept and reveals that the new lossy wall-based load can be a promising alternative to conventional designs particularly for applications involving high power or demanding superior stability over time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LMWC.2020.3022665</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-3254-6679</orcidid><orcidid>https://orcid.org/0000-0002-9565-2479</orcidid><orcidid>https://orcid.org/0000-0002-8755-1483</orcidid><orcidid>https://orcid.org/0000-0002-0298-4184</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1531-1309 |
ispartof | IEEE microwave and wireless components letters, 2020-11, Vol.30 (11), p.1045-1048 |
issn | 1531-1309 2771-957X 1558-1764 2771-9588 |
language | eng |
recordid | cdi_ieee_primary_9204470 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D printing <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Ka -band loads Absorption Broadband Conductivity Conductors Design gap waveguides (GWs) Group velocity Load Load matching Loaded waveguides Low conductivity Metals Pins Rectangular waveguides Three dimensional printing Waveguide components waveguide matched loads Waveguides |
title | A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ka-Band%20Wideband%20Matched%20Load%20Based%20on%20Lossy%20Waveguide%20Structures&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Shu,%20Minjie&rft.date=2020-11-01&rft.volume=30&rft.issue=11&rft.spage=1045&rft.epage=1048&rft.pages=1045-1048&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2020.3022665&rft_dat=%3Cproquest_RIE%3E2460154042%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460154042&rft_id=info:pmid/&rft_ieee_id=9204470&rfr_iscdi=true |