A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures

This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE microwave and wireless components letters 2020-11, Vol.30 (11), p.1045-1048
Hauptverfasser: Shu, Minjie, Guo, Cheng, Shang, Xiaobang, Zhu, Weijun, Zhang, Anxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1048
container_issue 11
container_start_page 1045
container_title IEEE microwave and wireless components letters
container_volume 30
creator Shu, Minjie
Guo, Cheng
Shang, Xiaobang
Zhu, Weijun
Zhang, Anxue
description This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a small footprint of the whole device, gap waveguide structures are employed to reduce the group velocity of the wave inside the waveguide. Additionally, the waveguide is formed of walls with low conductivity metal, yielding much higher conductor loss. The waveguide load is designed to have a spiral shape for further reduction on size. The design is demonstrated at Ka -band (26.5-40 GHz) using 3-D printing technology. The measured S_{11} of the prototype device is better than −20 dB across the entire Ka -band. This good result validates the proposed concept and reveals that the new lossy wall-based load can be a promising alternative to conventional designs particularly for applications involving high power or demanding superior stability over time.
doi_str_mv 10.1109/LMWC.2020.3022665
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9204470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204470</ieee_id><sourcerecordid>2460154042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-15c9d419313dc928ff53e39afad0678a395e06ed22a3fddcd81f4ad230d913ce3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k0m2m2O7-IVbPKj0GGKS1Rbt1mRX6L83S4uneQee-eBh7BJhggjqpl4sqwkHDhMCzotCHrERSlnmOC3E8ZAJcyRQp-wsxjUAilLgiFWz7Mnkc7Nx2XLl_PsQFqazn95ldWtcNjcxxXaTuhh32dL8-o8-kdlLF3rb9cHHc3bSmK_oLw51zN7ubl-rh7x-vn-sZnVuuaIuR2mVE6gIyVnFy6aR5EmZxjgopqUhJT0U3nFuqHHOuhIbYRwncArJehqz6_3ebWh_eh87vW77sEknNRcFoBQgeKJwT9mQPg6-0duw-jZhpxH04EoPrvTgSh9cpZmr_czKe__PKw5CTIH-AJEpY6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460154042</pqid></control><display><type>article</type><title>A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Shu, Minjie ; Guo, Cheng ; Shang, Xiaobang ; Zhu, Weijun ; Zhang, Anxue</creator><creatorcontrib>Shu, Minjie ; Guo, Cheng ; Shang, Xiaobang ; Zhu, Weijun ; Zhang, Anxue</creatorcontrib><description>This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a small footprint of the whole device, gap waveguide structures are employed to reduce the group velocity of the wave inside the waveguide. Additionally, the waveguide is formed of walls with low conductivity metal, yielding much higher conductor loss. The waveguide load is designed to have a spiral shape for further reduction on size. The design is demonstrated at Ka -band (26.5-40 GHz) using 3-D printing technology. The measured &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;S_{11} &lt;/tex-math&gt;&lt;/inline-formula&gt; of the prototype device is better than −20 dB across the entire Ka -band. This good result validates the proposed concept and reveals that the new lossy wall-based load can be a promising alternative to conventional designs particularly for applications involving high power or demanding superior stability over time.</description><identifier>ISSN: 1531-1309</identifier><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 1558-1764</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWC.2020.3022665</identifier><identifier>CODEN: IMWCBJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D printing ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Ka -band loads ; Absorption ; Broadband ; Conductivity ; Conductors ; Design ; gap waveguides (GWs) ; Group velocity ; Load ; Load matching ; Loaded waveguides ; Low conductivity ; Metals ; Pins ; Rectangular waveguides ; Three dimensional printing ; Waveguide components ; waveguide matched loads ; Waveguides</subject><ispartof>IEEE microwave and wireless components letters, 2020-11, Vol.30 (11), p.1045-1048</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-15c9d419313dc928ff53e39afad0678a395e06ed22a3fddcd81f4ad230d913ce3</citedby><cites>FETCH-LOGICAL-c293t-15c9d419313dc928ff53e39afad0678a395e06ed22a3fddcd81f4ad230d913ce3</cites><orcidid>0000-0002-3254-6679 ; 0000-0002-9565-2479 ; 0000-0002-8755-1483 ; 0000-0002-0298-4184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9204470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shu, Minjie</creatorcontrib><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Shang, Xiaobang</creatorcontrib><creatorcontrib>Zhu, Weijun</creatorcontrib><creatorcontrib>Zhang, Anxue</creatorcontrib><title>A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures</title><title>IEEE microwave and wireless components letters</title><addtitle>LMWC</addtitle><description>This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a small footprint of the whole device, gap waveguide structures are employed to reduce the group velocity of the wave inside the waveguide. Additionally, the waveguide is formed of walls with low conductivity metal, yielding much higher conductor loss. The waveguide load is designed to have a spiral shape for further reduction on size. The design is demonstrated at Ka -band (26.5-40 GHz) using 3-D printing technology. The measured &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;S_{11} &lt;/tex-math&gt;&lt;/inline-formula&gt; of the prototype device is better than −20 dB across the entire Ka -band. This good result validates the proposed concept and reveals that the new lossy wall-based load can be a promising alternative to conventional designs particularly for applications involving high power or demanding superior stability over time.</description><subject>3-D printing</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Ka -band loads</subject><subject>Absorption</subject><subject>Broadband</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Design</subject><subject>gap waveguides (GWs)</subject><subject>Group velocity</subject><subject>Load</subject><subject>Load matching</subject><subject>Loaded waveguides</subject><subject>Low conductivity</subject><subject>Metals</subject><subject>Pins</subject><subject>Rectangular waveguides</subject><subject>Three dimensional printing</subject><subject>Waveguide components</subject><subject>waveguide matched loads</subject><subject>Waveguides</subject><issn>1531-1309</issn><issn>2771-957X</issn><issn>1558-1764</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k0m2m2O7-IVbPKj0GGKS1Rbt1mRX6L83S4uneQee-eBh7BJhggjqpl4sqwkHDhMCzotCHrERSlnmOC3E8ZAJcyRQp-wsxjUAilLgiFWz7Mnkc7Nx2XLl_PsQFqazn95ldWtcNjcxxXaTuhh32dL8-o8-kdlLF3rb9cHHc3bSmK_oLw51zN7ubl-rh7x-vn-sZnVuuaIuR2mVE6gIyVnFy6aR5EmZxjgopqUhJT0U3nFuqHHOuhIbYRwncArJehqz6_3ebWh_eh87vW77sEknNRcFoBQgeKJwT9mQPg6-0duw-jZhpxH04EoPrvTgSh9cpZmr_czKe__PKw5CTIH-AJEpY6g</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Shu, Minjie</creator><creator>Guo, Cheng</creator><creator>Shang, Xiaobang</creator><creator>Zhu, Weijun</creator><creator>Zhang, Anxue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3254-6679</orcidid><orcidid>https://orcid.org/0000-0002-9565-2479</orcidid><orcidid>https://orcid.org/0000-0002-8755-1483</orcidid><orcidid>https://orcid.org/0000-0002-0298-4184</orcidid></search><sort><creationdate>20201101</creationdate><title>A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures</title><author>Shu, Minjie ; Guo, Cheng ; Shang, Xiaobang ; Zhu, Weijun ; Zhang, Anxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-15c9d419313dc928ff53e39afad0678a395e06ed22a3fddcd81f4ad230d913ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printing</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Ka -band loads</topic><topic>Absorption</topic><topic>Broadband</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Design</topic><topic>gap waveguides (GWs)</topic><topic>Group velocity</topic><topic>Load</topic><topic>Load matching</topic><topic>Loaded waveguides</topic><topic>Low conductivity</topic><topic>Metals</topic><topic>Pins</topic><topic>Rectangular waveguides</topic><topic>Three dimensional printing</topic><topic>Waveguide components</topic><topic>waveguide matched loads</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Minjie</creatorcontrib><creatorcontrib>Guo, Cheng</creatorcontrib><creatorcontrib>Shang, Xiaobang</creatorcontrib><creatorcontrib>Zhu, Weijun</creatorcontrib><creatorcontrib>Zhang, Anxue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless components letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shu, Minjie</au><au>Guo, Cheng</au><au>Shang, Xiaobang</au><au>Zhu, Weijun</au><au>Zhang, Anxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures</atitle><jtitle>IEEE microwave and wireless components letters</jtitle><stitle>LMWC</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>1045</spage><epage>1048</epage><pages>1045-1048</pages><issn>1531-1309</issn><issn>2771-957X</issn><eissn>1558-1764</eissn><eissn>2771-9588</eissn><coden>IMWCBJ</coden><abstract>This letter presents the design of a new type of wideband waveguide matched loads. Unlike conventional loads based on absorbing materials, the proposed design relies on conductor loss of the waveguide to achieve the desired absorption level. To increase the waveguide loss and meanwhile maintain a small footprint of the whole device, gap waveguide structures are employed to reduce the group velocity of the wave inside the waveguide. Additionally, the waveguide is formed of walls with low conductivity metal, yielding much higher conductor loss. The waveguide load is designed to have a spiral shape for further reduction on size. The design is demonstrated at Ka -band (26.5-40 GHz) using 3-D printing technology. The measured &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;S_{11} &lt;/tex-math&gt;&lt;/inline-formula&gt; of the prototype device is better than −20 dB across the entire Ka -band. This good result validates the proposed concept and reveals that the new lossy wall-based load can be a promising alternative to conventional designs particularly for applications involving high power or demanding superior stability over time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LMWC.2020.3022665</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-3254-6679</orcidid><orcidid>https://orcid.org/0000-0002-9565-2479</orcidid><orcidid>https://orcid.org/0000-0002-8755-1483</orcidid><orcidid>https://orcid.org/0000-0002-0298-4184</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1531-1309
ispartof IEEE microwave and wireless components letters, 2020-11, Vol.30 (11), p.1045-1048
issn 1531-1309
2771-957X
1558-1764
2771-9588
language eng
recordid cdi_ieee_primary_9204470
source IEEE Electronic Library (IEL)
subjects 3-D printing
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Ka -band loads
Absorption
Broadband
Conductivity
Conductors
Design
gap waveguides (GWs)
Group velocity
Load
Load matching
Loaded waveguides
Low conductivity
Metals
Pins
Rectangular waveguides
Three dimensional printing
Waveguide components
waveguide matched loads
Waveguides
title A Ka-Band Wideband Matched Load Based on Lossy Waveguide Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ka-Band%20Wideband%20Matched%20Load%20Based%20on%20Lossy%20Waveguide%20Structures&rft.jtitle=IEEE%20microwave%20and%20wireless%20components%20letters&rft.au=Shu,%20Minjie&rft.date=2020-11-01&rft.volume=30&rft.issue=11&rft.spage=1045&rft.epage=1048&rft.pages=1045-1048&rft.issn=1531-1309&rft.eissn=1558-1764&rft.coden=IMWCBJ&rft_id=info:doi/10.1109/LMWC.2020.3022665&rft_dat=%3Cproquest_RIE%3E2460154042%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460154042&rft_id=info:pmid/&rft_ieee_id=9204470&rfr_iscdi=true