Deep Multi-View Subspace Clustering With Unified and Discriminative Learning
Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2021, Vol.23, p.3483-3493 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3493 |
---|---|
container_issue | |
container_start_page | 3483 |
container_title | IEEE transactions on multimedia |
container_volume | 23 |
creator | Wang, Qianqian Cheng, Jiafeng Gao, Quanxue Zhao, Guoshuai Jiao, Licheng |
description | Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they cannot learn discriminative feature on different clusters of different views, i.e., inter-cluster difference. To solve these problems, in this paper, we propose a novel Deep Multi-view Subspace Clustering with Unified and Discriminative Learning (DMSC-UDL). DMSC-UDL combines global and local structures with self-expression layer. The global and local structures help each other forward and achieve small distance between samples of the same cluster. To make samples in different clusters of different views farther, DMSC-UDL uses a discriminative constraint between different views. In this way, DMSC-UDL makes the same cluster's samples have large weights, while different clusters' samples have small weights. Thus, it can learn a better shared connection matrix for multi-view clustering. Extensive experimental results reveal that the proposed multi-view clustering method is superior to several state-of-the-art multi-view clustering methods in terms of performance. |
doi_str_mv | 10.1109/TMM.2020.3025666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9204408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204408</ieee_id><sourcerecordid>2583636640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-db96500fee227c9ba0ce37f4190030a54f5a24180519eff9868f3074069c11d33</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7FYYk45fyYeUcuXlIqBFkbLTc7gqqTBTkD8e1K1Yrobnve900PIJYMJY2BuFvP5hAOHiQCutNZHZMSMZBlAnh8Pu-KQGc7glJyltAZgUkE-IuUMsaXzftOF7DXgD33pV6l1FdLppk8dxtC807fQfdBlE3zAmrqmprOQqhg-Q-O68I20RBebATwnJ95tEl4c5pgs7-8W08esfH54mt6WWcUN67J6ZbQC8Iic55VZOahQ5F4yAyDAKemV45IVoJhB702hCy8gl6BNxVgtxJhc73vbuP3qMXV2ve1jM5y0XBVCC60lDBTsqSpuU4robTv87OKvZWB3zuzgzO6c2YOzIXK1jwRE_McNBymhEH-Va2ZC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583636640</pqid></control><display><type>article</type><title>Deep Multi-View Subspace Clustering With Unified and Discriminative Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Qianqian ; Cheng, Jiafeng ; Gao, Quanxue ; Zhao, Guoshuai ; Jiao, Licheng</creator><creatorcontrib>Wang, Qianqian ; Cheng, Jiafeng ; Gao, Quanxue ; Zhao, Guoshuai ; Jiao, Licheng</creatorcontrib><description>Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they cannot learn discriminative feature on different clusters of different views, i.e., inter-cluster difference. To solve these problems, in this paper, we propose a novel Deep Multi-view Subspace Clustering with Unified and Discriminative Learning (DMSC-UDL). DMSC-UDL combines global and local structures with self-expression layer. The global and local structures help each other forward and achieve small distance between samples of the same cluster. To make samples in different clusters of different views farther, DMSC-UDL uses a discriminative constraint between different views. In this way, DMSC-UDL makes the same cluster's samples have large weights, while different clusters' samples have small weights. Thus, it can learn a better shared connection matrix for multi-view clustering. Extensive experimental results reveal that the proposed multi-view clustering method is superior to several state-of-the-art multi-view clustering methods in terms of performance.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3025666</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; Clustering methods ; Convolution ; Correlation ; Decoding ; discrimi- native learning ; Feature extraction ; Intserv networks ; Learning ; local structure ; Multi-view clustering ; Subspaces</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.3483-3493</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-db96500fee227c9ba0ce37f4190030a54f5a24180519eff9868f3074069c11d33</citedby><cites>FETCH-LOGICAL-c291t-db96500fee227c9ba0ce37f4190030a54f5a24180519eff9868f3074069c11d33</cites><orcidid>0000-0003-3354-9617 ; 0000-0001-5082-2940 ; 0000-0001-8217-5952 ; 0000-0003-4392-8450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9204408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Cheng, Jiafeng</creatorcontrib><creatorcontrib>Gao, Quanxue</creatorcontrib><creatorcontrib>Zhao, Guoshuai</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><title>Deep Multi-View Subspace Clustering With Unified and Discriminative Learning</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they cannot learn discriminative feature on different clusters of different views, i.e., inter-cluster difference. To solve these problems, in this paper, we propose a novel Deep Multi-view Subspace Clustering with Unified and Discriminative Learning (DMSC-UDL). DMSC-UDL combines global and local structures with self-expression layer. The global and local structures help each other forward and achieve small distance between samples of the same cluster. To make samples in different clusters of different views farther, DMSC-UDL uses a discriminative constraint between different views. In this way, DMSC-UDL makes the same cluster's samples have large weights, while different clusters' samples have small weights. Thus, it can learn a better shared connection matrix for multi-view clustering. Extensive experimental results reveal that the proposed multi-view clustering method is superior to several state-of-the-art multi-view clustering methods in terms of performance.</description><subject>Clustering</subject><subject>Clustering methods</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Decoding</subject><subject>discrimi- native learning</subject><subject>Feature extraction</subject><subject>Intserv networks</subject><subject>Learning</subject><subject>local structure</subject><subject>Multi-view clustering</subject><subject>Subspaces</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7FYYk45fyYeUcuXlIqBFkbLTc7gqqTBTkD8e1K1Yrobnve900PIJYMJY2BuFvP5hAOHiQCutNZHZMSMZBlAnh8Pu-KQGc7glJyltAZgUkE-IuUMsaXzftOF7DXgD33pV6l1FdLppk8dxtC807fQfdBlE3zAmrqmprOQqhg-Q-O68I20RBebATwnJ95tEl4c5pgs7-8W08esfH54mt6WWcUN67J6ZbQC8Iic55VZOahQ5F4yAyDAKemV45IVoJhB702hCy8gl6BNxVgtxJhc73vbuP3qMXV2ve1jM5y0XBVCC60lDBTsqSpuU4robTv87OKvZWB3zuzgzO6c2YOzIXK1jwRE_McNBymhEH-Va2ZC</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Qianqian</creator><creator>Cheng, Jiafeng</creator><creator>Gao, Quanxue</creator><creator>Zhao, Guoshuai</creator><creator>Jiao, Licheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0001-5082-2940</orcidid><orcidid>https://orcid.org/0000-0001-8217-5952</orcidid><orcidid>https://orcid.org/0000-0003-4392-8450</orcidid></search><sort><creationdate>2021</creationdate><title>Deep Multi-View Subspace Clustering With Unified and Discriminative Learning</title><author>Wang, Qianqian ; Cheng, Jiafeng ; Gao, Quanxue ; Zhao, Guoshuai ; Jiao, Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-db96500fee227c9ba0ce37f4190030a54f5a24180519eff9868f3074069c11d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Clustering methods</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Decoding</topic><topic>discrimi- native learning</topic><topic>Feature extraction</topic><topic>Intserv networks</topic><topic>Learning</topic><topic>local structure</topic><topic>Multi-view clustering</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Cheng, Jiafeng</creatorcontrib><creatorcontrib>Gao, Quanxue</creatorcontrib><creatorcontrib>Zhao, Guoshuai</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Qianqian</au><au>Cheng, Jiafeng</au><au>Gao, Quanxue</au><au>Zhao, Guoshuai</au><au>Jiao, Licheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multi-View Subspace Clustering With Unified and Discriminative Learning</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>3483</spage><epage>3493</epage><pages>3483-3493</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they cannot learn discriminative feature on different clusters of different views, i.e., inter-cluster difference. To solve these problems, in this paper, we propose a novel Deep Multi-view Subspace Clustering with Unified and Discriminative Learning (DMSC-UDL). DMSC-UDL combines global and local structures with self-expression layer. The global and local structures help each other forward and achieve small distance between samples of the same cluster. To make samples in different clusters of different views farther, DMSC-UDL uses a discriminative constraint between different views. In this way, DMSC-UDL makes the same cluster's samples have large weights, while different clusters' samples have small weights. Thus, it can learn a better shared connection matrix for multi-view clustering. Extensive experimental results reveal that the proposed multi-view clustering method is superior to several state-of-the-art multi-view clustering methods in terms of performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3025666</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0001-5082-2940</orcidid><orcidid>https://orcid.org/0000-0001-8217-5952</orcidid><orcidid>https://orcid.org/0000-0003-4392-8450</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2021, Vol.23, p.3483-3493 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_9204408 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering Clustering methods Convolution Correlation Decoding discrimi- native learning Feature extraction Intserv networks Learning local structure Multi-view clustering Subspaces |
title | Deep Multi-View Subspace Clustering With Unified and Discriminative Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multi-View%20Subspace%20Clustering%20With%20Unified%20and%20Discriminative%20Learning&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Wang,%20Qianqian&rft.date=2021&rft.volume=23&rft.spage=3483&rft.epage=3493&rft.pages=3483-3493&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3025666&rft_dat=%3Cproquest_RIE%3E2583636640%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583636640&rft_id=info:pmid/&rft_ieee_id=9204408&rfr_iscdi=true |