Deep Multi-View Subspace Clustering With Unified and Discriminative Learning

Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2021, Vol.23, p.3483-3493
Hauptverfasser: Wang, Qianqian, Cheng, Jiafeng, Gao, Quanxue, Zhao, Guoshuai, Jiao, Licheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3493
container_issue
container_start_page 3483
container_title IEEE transactions on multimedia
container_volume 23
creator Wang, Qianqian
Cheng, Jiafeng
Gao, Quanxue
Zhao, Guoshuai
Jiao, Licheng
description Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they cannot learn discriminative feature on different clusters of different views, i.e., inter-cluster difference. To solve these problems, in this paper, we propose a novel Deep Multi-view Subspace Clustering with Unified and Discriminative Learning (DMSC-UDL). DMSC-UDL combines global and local structures with self-expression layer. The global and local structures help each other forward and achieve small distance between samples of the same cluster. To make samples in different clusters of different views farther, DMSC-UDL uses a discriminative constraint between different views. In this way, DMSC-UDL makes the same cluster's samples have large weights, while different clusters' samples have small weights. Thus, it can learn a better shared connection matrix for multi-view clustering. Extensive experimental results reveal that the proposed multi-view clustering method is superior to several state-of-the-art multi-view clustering methods in terms of performance.
doi_str_mv 10.1109/TMM.2020.3025666
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9204408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204408</ieee_id><sourcerecordid>2583636640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-db96500fee227c9ba0ce37f4190030a54f5a24180519eff9868f3074069c11d33</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwI7FYYk45fyYeUcuXlIqBFkbLTc7gqqTBTkD8e1K1Yrobnve900PIJYMJY2BuFvP5hAOHiQCutNZHZMSMZBlAnh8Pu-KQGc7glJyltAZgUkE-IuUMsaXzftOF7DXgD33pV6l1FdLppk8dxtC807fQfdBlE3zAmrqmprOQqhg-Q-O68I20RBebATwnJ95tEl4c5pgs7-8W08esfH54mt6WWcUN67J6ZbQC8Iic55VZOahQ5F4yAyDAKemV45IVoJhB702hCy8gl6BNxVgtxJhc73vbuP3qMXV2ve1jM5y0XBVCC60lDBTsqSpuU4robTv87OKvZWB3zuzgzO6c2YOzIXK1jwRE_McNBymhEH-Va2ZC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583636640</pqid></control><display><type>article</type><title>Deep Multi-View Subspace Clustering With Unified and Discriminative Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Qianqian ; Cheng, Jiafeng ; Gao, Quanxue ; Zhao, Guoshuai ; Jiao, Licheng</creator><creatorcontrib>Wang, Qianqian ; Cheng, Jiafeng ; Gao, Quanxue ; Zhao, Guoshuai ; Jiao, Licheng</creatorcontrib><description>Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they cannot learn discriminative feature on different clusters of different views, i.e., inter-cluster difference. To solve these problems, in this paper, we propose a novel Deep Multi-view Subspace Clustering with Unified and Discriminative Learning (DMSC-UDL). DMSC-UDL combines global and local structures with self-expression layer. The global and local structures help each other forward and achieve small distance between samples of the same cluster. To make samples in different clusters of different views farther, DMSC-UDL uses a discriminative constraint between different views. In this way, DMSC-UDL makes the same cluster's samples have large weights, while different clusters' samples have small weights. Thus, it can learn a better shared connection matrix for multi-view clustering. Extensive experimental results reveal that the proposed multi-view clustering method is superior to several state-of-the-art multi-view clustering methods in terms of performance.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3025666</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; Clustering methods ; Convolution ; Correlation ; Decoding ; discrimi- native learning ; Feature extraction ; Intserv networks ; Learning ; local structure ; Multi-view clustering ; Subspaces</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.3483-3493</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-db96500fee227c9ba0ce37f4190030a54f5a24180519eff9868f3074069c11d33</citedby><cites>FETCH-LOGICAL-c291t-db96500fee227c9ba0ce37f4190030a54f5a24180519eff9868f3074069c11d33</cites><orcidid>0000-0003-3354-9617 ; 0000-0001-5082-2940 ; 0000-0001-8217-5952 ; 0000-0003-4392-8450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9204408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Cheng, Jiafeng</creatorcontrib><creatorcontrib>Gao, Quanxue</creatorcontrib><creatorcontrib>Zhao, Guoshuai</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><title>Deep Multi-View Subspace Clustering With Unified and Discriminative Learning</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they cannot learn discriminative feature on different clusters of different views, i.e., inter-cluster difference. To solve these problems, in this paper, we propose a novel Deep Multi-view Subspace Clustering with Unified and Discriminative Learning (DMSC-UDL). DMSC-UDL combines global and local structures with self-expression layer. The global and local structures help each other forward and achieve small distance between samples of the same cluster. To make samples in different clusters of different views farther, DMSC-UDL uses a discriminative constraint between different views. In this way, DMSC-UDL makes the same cluster's samples have large weights, while different clusters' samples have small weights. Thus, it can learn a better shared connection matrix for multi-view clustering. Extensive experimental results reveal that the proposed multi-view clustering method is superior to several state-of-the-art multi-view clustering methods in terms of performance.</description><subject>Clustering</subject><subject>Clustering methods</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Decoding</subject><subject>discrimi- native learning</subject><subject>Feature extraction</subject><subject>Intserv networks</subject><subject>Learning</subject><subject>local structure</subject><subject>Multi-view clustering</subject><subject>Subspaces</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqWwI7FYYk45fyYeUcuXlIqBFkbLTc7gqqTBTkD8e1K1Yrobnve900PIJYMJY2BuFvP5hAOHiQCutNZHZMSMZBlAnh8Pu-KQGc7glJyltAZgUkE-IuUMsaXzftOF7DXgD33pV6l1FdLppk8dxtC807fQfdBlE3zAmrqmprOQqhg-Q-O68I20RBebATwnJ95tEl4c5pgs7-8W08esfH54mt6WWcUN67J6ZbQC8Iic55VZOahQ5F4yAyDAKemV45IVoJhB702hCy8gl6BNxVgtxJhc73vbuP3qMXV2ve1jM5y0XBVCC60lDBTsqSpuU4robTv87OKvZWB3zuzgzO6c2YOzIXK1jwRE_McNBymhEH-Va2ZC</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Qianqian</creator><creator>Cheng, Jiafeng</creator><creator>Gao, Quanxue</creator><creator>Zhao, Guoshuai</creator><creator>Jiao, Licheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0001-5082-2940</orcidid><orcidid>https://orcid.org/0000-0001-8217-5952</orcidid><orcidid>https://orcid.org/0000-0003-4392-8450</orcidid></search><sort><creationdate>2021</creationdate><title>Deep Multi-View Subspace Clustering With Unified and Discriminative Learning</title><author>Wang, Qianqian ; Cheng, Jiafeng ; Gao, Quanxue ; Zhao, Guoshuai ; Jiao, Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-db96500fee227c9ba0ce37f4190030a54f5a24180519eff9868f3074069c11d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>Clustering methods</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Decoding</topic><topic>discrimi- native learning</topic><topic>Feature extraction</topic><topic>Intserv networks</topic><topic>Learning</topic><topic>local structure</topic><topic>Multi-view clustering</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Cheng, Jiafeng</creatorcontrib><creatorcontrib>Gao, Quanxue</creatorcontrib><creatorcontrib>Zhao, Guoshuai</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Qianqian</au><au>Cheng, Jiafeng</au><au>Gao, Quanxue</au><au>Zhao, Guoshuai</au><au>Jiao, Licheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multi-View Subspace Clustering With Unified and Discriminative Learning</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>3483</spage><epage>3493</epage><pages>3483-3493</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Deep multi-view subspace clustering has achieved promising performance compared with other multi-view clustering. However, existing deep multi-view subspace clustering only considers the global structure for all views, and they ignore the local geometric structure among each view. In addition, they cannot learn discriminative feature on different clusters of different views, i.e., inter-cluster difference. To solve these problems, in this paper, we propose a novel Deep Multi-view Subspace Clustering with Unified and Discriminative Learning (DMSC-UDL). DMSC-UDL combines global and local structures with self-expression layer. The global and local structures help each other forward and achieve small distance between samples of the same cluster. To make samples in different clusters of different views farther, DMSC-UDL uses a discriminative constraint between different views. In this way, DMSC-UDL makes the same cluster's samples have large weights, while different clusters' samples have small weights. Thus, it can learn a better shared connection matrix for multi-view clustering. Extensive experimental results reveal that the proposed multi-view clustering method is superior to several state-of-the-art multi-view clustering methods in terms of performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3025666</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3354-9617</orcidid><orcidid>https://orcid.org/0000-0001-5082-2940</orcidid><orcidid>https://orcid.org/0000-0001-8217-5952</orcidid><orcidid>https://orcid.org/0000-0003-4392-8450</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2021, Vol.23, p.3483-3493
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_9204408
source IEEE Electronic Library (IEL)
subjects Clustering
Clustering methods
Convolution
Correlation
Decoding
discrimi- native learning
Feature extraction
Intserv networks
Learning
local structure
Multi-view clustering
Subspaces
title Deep Multi-View Subspace Clustering With Unified and Discriminative Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multi-View%20Subspace%20Clustering%20With%20Unified%20and%20Discriminative%20Learning&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Wang,%20Qianqian&rft.date=2021&rft.volume=23&rft.spage=3483&rft.epage=3493&rft.pages=3483-3493&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3025666&rft_dat=%3Cproquest_RIE%3E2583636640%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583636640&rft_id=info:pmid/&rft_ieee_id=9204408&rfr_iscdi=true