Attention-Aware Encoder-Decoder Neural Networks for Heterogeneous Graphs of Things
Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the applying of advanced learning frameworks, i.e., deep learning (DL). Nevertheless, this is a challenging task since the existing DL models are...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2021-04, Vol.17 (4), p.2890-2898 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2898 |
---|---|
container_issue | 4 |
container_start_page | 2890 |
container_title | IEEE transactions on industrial informatics |
container_volume | 17 |
creator | Li, Yangfan Chen, Cen Duan, Mingxing Zeng, Zeng Li, Kenli |
description | Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the applying of advanced learning frameworks, i.e., deep learning (DL). Nevertheless, this is a challenging task since the existing DL models are hard to accurately express the complex semantics and attributes for those heterogeneous nodes and links in HGoT. To address this issue, we develop attention-aware encoder-decoder graph neural networks for HGoT, termed as HGAED. Specifically, we utilize the attention-based separate-and-merge method to improve the accuracy, and leverage the encoder-decoder architecture for implementation. In the heart of HGAED, the separate-and-merge processes can be encapsulated into encoding and decoding blocks. Then, blocks are stacked for constructing an encoder-decoder architecture to jointly and hierarchically fuse heterogeneous structures and contents of nodes. Extensive experiments on three real-world datasets demonstrate the superior performance of HGAED over state-of-the-art baselines. |
doi_str_mv | 10.1109/TII.2020.3025592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9204386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204386</ieee_id><sourcerecordid>2478147638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8931db8a4b820d31d61841af693c2e2a881036a76fb9b9b6794e69e8f06afb783</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd3wUvBc-uXpE2T45hzGwwFmeeQdl-2ztnMJGX439u5Id_hvcN774MfIfcUMkpBPS3n84wBg4wDKwrFLsiAqpymAAVc9r4oaMoZ8GtyE8IWgJfA1YC8j2LENjauTUcH4zGZtLVboU-f8U-TV-y82fUSD85_hsQ6n8wwondrbNF1IZl6s9-ExNlkuWnadbglV9bsAt6ddUg-XibL8SxdvE3n49EirZmiMZWK01UlTV5JBqveCypzaqxQvGbIjJQUuDClsJXqT5QqR6FQWhDGVqXkQ_J42t17991hiHrrOt_2LzXLS0nzUvBjCk6p2rsQPFq9982X8T-agj6S0z05fSSnz-T6ysOp0iDif1wxyLkU_BfXgGkb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478147638</pqid></control><display><type>article</type><title>Attention-Aware Encoder-Decoder Neural Networks for Heterogeneous Graphs of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yangfan ; Chen, Cen ; Duan, Mingxing ; Zeng, Zeng ; Li, Kenli</creator><creatorcontrib>Li, Yangfan ; Chen, Cen ; Duan, Mingxing ; Zeng, Zeng ; Li, Kenli</creatorcontrib><description>Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the applying of advanced learning frameworks, i.e., deep learning (DL). Nevertheless, this is a challenging task since the existing DL models are hard to accurately express the complex semantics and attributes for those heterogeneous nodes and links in HGoT. To address this issue, we develop attention-aware encoder-decoder graph neural networks for HGoT, termed as HGAED. Specifically, we utilize the attention-based separate-and-merge method to improve the accuracy, and leverage the encoder-decoder architecture for implementation. In the heart of HGAED, the separate-and-merge processes can be encapsulated into encoding and decoding blocks. Then, blocks are stacked for constructing an encoder-decoder architecture to jointly and hierarchically fuse heterogeneous structures and contents of nodes. Extensive experiments on three real-world datasets demonstrate the superior performance of HGAED over state-of-the-art baselines.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2020.3025592</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coders ; Computer architecture ; Decoding ; Encoding ; Fuses ; Graph neural network (GNN) ; Graph neural networks ; graph of things ; heterogeneous graph ; Informatics ; Internet of Things ; Internet of Things (IoT) ; Neural networks ; Nodes ; Semantics</subject><ispartof>IEEE transactions on industrial informatics, 2021-04, Vol.17 (4), p.2890-2898</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8931db8a4b820d31d61841af693c2e2a881036a76fb9b9b6794e69e8f06afb783</citedby><cites>FETCH-LOGICAL-c291t-8931db8a4b820d31d61841af693c2e2a881036a76fb9b9b6794e69e8f06afb783</cites><orcidid>0000-0002-1049-6244 ; 0000-0002-2405-0323 ; 0000-0003-3640-5088 ; 0000-0003-1389-0148 ; 0000-0002-2635-7716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9204386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yangfan</creatorcontrib><creatorcontrib>Chen, Cen</creatorcontrib><creatorcontrib>Duan, Mingxing</creatorcontrib><creatorcontrib>Zeng, Zeng</creatorcontrib><creatorcontrib>Li, Kenli</creatorcontrib><title>Attention-Aware Encoder-Decoder Neural Networks for Heterogeneous Graphs of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the applying of advanced learning frameworks, i.e., deep learning (DL). Nevertheless, this is a challenging task since the existing DL models are hard to accurately express the complex semantics and attributes for those heterogeneous nodes and links in HGoT. To address this issue, we develop attention-aware encoder-decoder graph neural networks for HGoT, termed as HGAED. Specifically, we utilize the attention-based separate-and-merge method to improve the accuracy, and leverage the encoder-decoder architecture for implementation. In the heart of HGAED, the separate-and-merge processes can be encapsulated into encoding and decoding blocks. Then, blocks are stacked for constructing an encoder-decoder architecture to jointly and hierarchically fuse heterogeneous structures and contents of nodes. Extensive experiments on three real-world datasets demonstrate the superior performance of HGAED over state-of-the-art baselines.</description><subject>Coders</subject><subject>Computer architecture</subject><subject>Decoding</subject><subject>Encoding</subject><subject>Fuses</subject><subject>Graph neural network (GNN)</subject><subject>Graph neural networks</subject><subject>graph of things</subject><subject>heterogeneous graph</subject><subject>Informatics</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Neural networks</subject><subject>Nodes</subject><subject>Semantics</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAYxYMoOKd3wUvBc-uXpE2T45hzGwwFmeeQdl-2ztnMJGX439u5Id_hvcN774MfIfcUMkpBPS3n84wBg4wDKwrFLsiAqpymAAVc9r4oaMoZ8GtyE8IWgJfA1YC8j2LENjauTUcH4zGZtLVboU-f8U-TV-y82fUSD85_hsQ6n8wwondrbNF1IZl6s9-ExNlkuWnadbglV9bsAt6ddUg-XibL8SxdvE3n49EirZmiMZWK01UlTV5JBqveCypzaqxQvGbIjJQUuDClsJXqT5QqR6FQWhDGVqXkQ_J42t17991hiHrrOt_2LzXLS0nzUvBjCk6p2rsQPFq9982X8T-agj6S0z05fSSnz-T6ysOp0iDif1wxyLkU_BfXgGkb</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Li, Yangfan</creator><creator>Chen, Cen</creator><creator>Duan, Mingxing</creator><creator>Zeng, Zeng</creator><creator>Li, Kenli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1049-6244</orcidid><orcidid>https://orcid.org/0000-0002-2405-0323</orcidid><orcidid>https://orcid.org/0000-0003-3640-5088</orcidid><orcidid>https://orcid.org/0000-0003-1389-0148</orcidid><orcidid>https://orcid.org/0000-0002-2635-7716</orcidid></search><sort><creationdate>20210401</creationdate><title>Attention-Aware Encoder-Decoder Neural Networks for Heterogeneous Graphs of Things</title><author>Li, Yangfan ; Chen, Cen ; Duan, Mingxing ; Zeng, Zeng ; Li, Kenli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8931db8a4b820d31d61841af693c2e2a881036a76fb9b9b6794e69e8f06afb783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coders</topic><topic>Computer architecture</topic><topic>Decoding</topic><topic>Encoding</topic><topic>Fuses</topic><topic>Graph neural network (GNN)</topic><topic>Graph neural networks</topic><topic>graph of things</topic><topic>heterogeneous graph</topic><topic>Informatics</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Neural networks</topic><topic>Nodes</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yangfan</creatorcontrib><creatorcontrib>Chen, Cen</creatorcontrib><creatorcontrib>Duan, Mingxing</creatorcontrib><creatorcontrib>Zeng, Zeng</creatorcontrib><creatorcontrib>Li, Kenli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yangfan</au><au>Chen, Cen</au><au>Duan, Mingxing</au><au>Zeng, Zeng</au><au>Li, Kenli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention-Aware Encoder-Decoder Neural Networks for Heterogeneous Graphs of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>2890</spage><epage>2898</epage><pages>2890-2898</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the applying of advanced learning frameworks, i.e., deep learning (DL). Nevertheless, this is a challenging task since the existing DL models are hard to accurately express the complex semantics and attributes for those heterogeneous nodes and links in HGoT. To address this issue, we develop attention-aware encoder-decoder graph neural networks for HGoT, termed as HGAED. Specifically, we utilize the attention-based separate-and-merge method to improve the accuracy, and leverage the encoder-decoder architecture for implementation. In the heart of HGAED, the separate-and-merge processes can be encapsulated into encoding and decoding blocks. Then, blocks are stacked for constructing an encoder-decoder architecture to jointly and hierarchically fuse heterogeneous structures and contents of nodes. Extensive experiments on three real-world datasets demonstrate the superior performance of HGAED over state-of-the-art baselines.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2020.3025592</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1049-6244</orcidid><orcidid>https://orcid.org/0000-0002-2405-0323</orcidid><orcidid>https://orcid.org/0000-0003-3640-5088</orcidid><orcidid>https://orcid.org/0000-0003-1389-0148</orcidid><orcidid>https://orcid.org/0000-0002-2635-7716</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2021-04, Vol.17 (4), p.2890-2898 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_9204386 |
source | IEEE Electronic Library (IEL) |
subjects | Coders Computer architecture Decoding Encoding Fuses Graph neural network (GNN) Graph neural networks graph of things heterogeneous graph Informatics Internet of Things Internet of Things (IoT) Neural networks Nodes Semantics |
title | Attention-Aware Encoder-Decoder Neural Networks for Heterogeneous Graphs of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention-Aware%20Encoder-Decoder%20Neural%20Networks%20for%20Heterogeneous%20Graphs%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Li,%20Yangfan&rft.date=2021-04-01&rft.volume=17&rft.issue=4&rft.spage=2890&rft.epage=2898&rft.pages=2890-2898&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2020.3025592&rft_dat=%3Cproquest_RIE%3E2478147638%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478147638&rft_id=info:pmid/&rft_ieee_id=9204386&rfr_iscdi=true |