Development of a Nb/sub 3/Sn quadrupole magnet model
One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the crowded interaction regions of large particle accelerators. To learn about Nb/sub 3/Sn technology and to evaluate fabrication techni...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2001-03, Vol.11 (1), p.2184-2187 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2187 |
---|---|
container_issue | 1 |
container_start_page | 2184 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 11 |
creator | Devred, A. Durante, M. Gourdin, C. Juster, F.P. Peyrot, M. Rey, J.M. Rifflet, J.M. Streiff, J.M. Vedrine, P. |
description | One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the crowded interaction regions of large particle accelerators. To learn about Nb/sub 3/Sn technology and to evaluate fabrication techniques, DAPNIA/STCM at CEA/Saclay has undertaken an R&D program aimed at designing and building a 1 m-long, 56 mm single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It is expected to produce a nominal field gradient of 211 T/m at 11870 A. The coils are wound from Rutherford-type cables insulated with quartz fiber tapes, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated, austenitic collars, locked around the coil assembly by means of keys restrain the Lorentz forces. After reviewing the conceptual design of the magnet model, we report on the cable and cable insulation development programs and we present the results of NbTi-Nb/sub 3/Sn cable splice tests. |
doi_str_mv | 10.1109/77.920291 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_920291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>920291</ieee_id><sourcerecordid>10_1109_77_920291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c931-ed2269352e136e88ab866d230809d7a241da69f72937c377c5bf9ac315853a093</originalsourceid><addsrcrecordid>eNo9j0tLxDAUhYMoOI4u3LrK1kWnufc2TbKU8QmDLpx9SZtbGenLZir47x3p4OocOB8HPiGuQa0AlEuNWTlU6OBELEBrm6AGfXroSkNiEelcXMT4qRRkNtMLkd3zNzf90HK3l30tvXwt0ziVktL3Tn5NPozT0DcsW__R8V62feDmUpzVvol8dcyl2D4-bNfPyebt6WV9t0kqR5BwQMwdaWSgnK31pc3zgKSscsF4zCD43NUGHZmKjKl0WTtfEWiryStHS3E731ZjH-PIdTGMu9aPPwWo4s-2MKaYbQ_szczumPmfO46_5fBMww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of a Nb/sub 3/Sn quadrupole magnet model</title><source>IEEE Electronic Library (IEL)</source><creator>Devred, A. ; Durante, M. ; Gourdin, C. ; Juster, F.P. ; Peyrot, M. ; Rey, J.M. ; Rifflet, J.M. ; Streiff, J.M. ; Vedrine, P.</creator><creatorcontrib>Devred, A. ; Durante, M. ; Gourdin, C. ; Juster, F.P. ; Peyrot, M. ; Rey, J.M. ; Rifflet, J.M. ; Streiff, J.M. ; Vedrine, P.</creatorcontrib><description>One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the crowded interaction regions of large particle accelerators. To learn about Nb/sub 3/Sn technology and to evaluate fabrication techniques, DAPNIA/STCM at CEA/Saclay has undertaken an R&D program aimed at designing and building a 1 m-long, 56 mm single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It is expected to produce a nominal field gradient of 211 T/m at 11870 A. The coils are wound from Rutherford-type cables insulated with quartz fiber tapes, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated, austenitic collars, locked around the coil assembly by means of keys restrain the Lorentz forces. After reviewing the conceptual design of the magnet model, we report on the cable and cable insulation development programs and we present the results of NbTi-Nb/sub 3/Sn cable splice tests.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.920291</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Cable insulation ; Coils ; Fabrication ; Linear particle accelerator ; Magnetic properties ; Niobium compounds ; Superconducting magnets ; Tin ; Titanium compounds</subject><ispartof>IEEE transactions on applied superconductivity, 2001-03, Vol.11 (1), p.2184-2187</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c931-ed2269352e136e88ab866d230809d7a241da69f72937c377c5bf9ac315853a093</citedby><cites>FETCH-LOGICAL-c931-ed2269352e136e88ab866d230809d7a241da69f72937c377c5bf9ac315853a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/920291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/920291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Devred, A.</creatorcontrib><creatorcontrib>Durante, M.</creatorcontrib><creatorcontrib>Gourdin, C.</creatorcontrib><creatorcontrib>Juster, F.P.</creatorcontrib><creatorcontrib>Peyrot, M.</creatorcontrib><creatorcontrib>Rey, J.M.</creatorcontrib><creatorcontrib>Rifflet, J.M.</creatorcontrib><creatorcontrib>Streiff, J.M.</creatorcontrib><creatorcontrib>Vedrine, P.</creatorcontrib><title>Development of a Nb/sub 3/Sn quadrupole magnet model</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the crowded interaction regions of large particle accelerators. To learn about Nb/sub 3/Sn technology and to evaluate fabrication techniques, DAPNIA/STCM at CEA/Saclay has undertaken an R&D program aimed at designing and building a 1 m-long, 56 mm single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It is expected to produce a nominal field gradient of 211 T/m at 11870 A. The coils are wound from Rutherford-type cables insulated with quartz fiber tapes, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated, austenitic collars, locked around the coil assembly by means of keys restrain the Lorentz forces. After reviewing the conceptual design of the magnet model, we report on the cable and cable insulation development programs and we present the results of NbTi-Nb/sub 3/Sn cable splice tests.</description><subject>Buildings</subject><subject>Cable insulation</subject><subject>Coils</subject><subject>Fabrication</subject><subject>Linear particle accelerator</subject><subject>Magnetic properties</subject><subject>Niobium compounds</subject><subject>Superconducting magnets</subject><subject>Tin</subject><subject>Titanium compounds</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0tLxDAUhYMoOI4u3LrK1kWnufc2TbKU8QmDLpx9SZtbGenLZir47x3p4OocOB8HPiGuQa0AlEuNWTlU6OBELEBrm6AGfXroSkNiEelcXMT4qRRkNtMLkd3zNzf90HK3l30tvXwt0ziVktL3Tn5NPozT0DcsW__R8V62feDmUpzVvol8dcyl2D4-bNfPyebt6WV9t0kqR5BwQMwdaWSgnK31pc3zgKSscsF4zCD43NUGHZmKjKl0WTtfEWiryStHS3E731ZjH-PIdTGMu9aPPwWo4s-2MKaYbQ_szczumPmfO46_5fBMww</recordid><startdate>200103</startdate><enddate>200103</enddate><creator>Devred, A.</creator><creator>Durante, M.</creator><creator>Gourdin, C.</creator><creator>Juster, F.P.</creator><creator>Peyrot, M.</creator><creator>Rey, J.M.</creator><creator>Rifflet, J.M.</creator><creator>Streiff, J.M.</creator><creator>Vedrine, P.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200103</creationdate><title>Development of a Nb/sub 3/Sn quadrupole magnet model</title><author>Devred, A. ; Durante, M. ; Gourdin, C. ; Juster, F.P. ; Peyrot, M. ; Rey, J.M. ; Rifflet, J.M. ; Streiff, J.M. ; Vedrine, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c931-ed2269352e136e88ab866d230809d7a241da69f72937c377c5bf9ac315853a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Buildings</topic><topic>Cable insulation</topic><topic>Coils</topic><topic>Fabrication</topic><topic>Linear particle accelerator</topic><topic>Magnetic properties</topic><topic>Niobium compounds</topic><topic>Superconducting magnets</topic><topic>Tin</topic><topic>Titanium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devred, A.</creatorcontrib><creatorcontrib>Durante, M.</creatorcontrib><creatorcontrib>Gourdin, C.</creatorcontrib><creatorcontrib>Juster, F.P.</creatorcontrib><creatorcontrib>Peyrot, M.</creatorcontrib><creatorcontrib>Rey, J.M.</creatorcontrib><creatorcontrib>Rifflet, J.M.</creatorcontrib><creatorcontrib>Streiff, J.M.</creatorcontrib><creatorcontrib>Vedrine, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Devred, A.</au><au>Durante, M.</au><au>Gourdin, C.</au><au>Juster, F.P.</au><au>Peyrot, M.</au><au>Rey, J.M.</au><au>Rifflet, J.M.</au><au>Streiff, J.M.</au><au>Vedrine, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Nb/sub 3/Sn quadrupole magnet model</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2001-03</date><risdate>2001</risdate><volume>11</volume><issue>1</issue><spage>2184</spage><epage>2187</epage><pages>2184-2187</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the crowded interaction regions of large particle accelerators. To learn about Nb/sub 3/Sn technology and to evaluate fabrication techniques, DAPNIA/STCM at CEA/Saclay has undertaken an R&D program aimed at designing and building a 1 m-long, 56 mm single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It is expected to produce a nominal field gradient of 211 T/m at 11870 A. The coils are wound from Rutherford-type cables insulated with quartz fiber tapes, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated, austenitic collars, locked around the coil assembly by means of keys restrain the Lorentz forces. After reviewing the conceptual design of the magnet model, we report on the cable and cable insulation development programs and we present the results of NbTi-Nb/sub 3/Sn cable splice tests.</abstract><pub>IEEE</pub><doi>10.1109/77.920291</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2001-03, Vol.11 (1), p.2184-2187 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_920291 |
source | IEEE Electronic Library (IEL) |
subjects | Buildings Cable insulation Coils Fabrication Linear particle accelerator Magnetic properties Niobium compounds Superconducting magnets Tin Titanium compounds |
title | Development of a Nb/sub 3/Sn quadrupole magnet model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Nb/sub%203/Sn%20quadrupole%20magnet%20model&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Devred,%20A.&rft.date=2001-03&rft.volume=11&rft.issue=1&rft.spage=2184&rft.epage=2187&rft.pages=2184-2187&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.920291&rft_dat=%3Ccrossref_RIE%3E10_1109_77_920291%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=920291&rfr_iscdi=true |