An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition

In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-11, Vol.67 (11), p.5069-5075
Hauptverfasser: Nidhin, K., Pande, Shubham, Yadav, Shon, Balanethiram, Suresh, Nair, Deleep R., Fregonese, Sebastien, Zimmer, Thomas, Chakravorty, Anjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5075
container_issue 11
container_start_page 5069
container_title IEEE transactions on electron devices
container_volume 67
creator Nidhin, K.
Pande, Shubham
Yadav, Shon
Balanethiram, Suresh
Nair, Deleep R.
Fregonese, Sebastien
Zimmer, Thomas
Chakravorty, Anjan
description In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers in the framework of self-heating bringing down the overall model complexity. Compared to the traditional thermal modeling approach for an n-finger transistor where the number of circuit nodes increases as n 2 , our model requires only n-number of nodes. The proposed model is scalable for any number of fingers and with different emitter geometries. The model is validated with 3-D thermal simulations and measured data from STMicroelectronics B4T technology. The Verilog-A implemented model simulates 40% faster than the conventional model in a transient simulation of a five-finger transistor.
doi_str_mv 10.1109/TED.2020.3021626
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9199381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9199381</ieee_id><sourcerecordid>2454470331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ca6fe5e25b792397b199dc6241cf97e74f7a995bb34bd74fbc2357c9fafc95a83</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8Bn3zozGfTPM45N2Fj4LrnkKaJy-jamXaC_70ZHXu6nMvvHO49ADxiNMIYydd8-j4iiKARRQSnJL0CA8y5SGTK0mswQAhniaQZvQV3bbuLMmWMDMB6XMOpc954W3cw39qw1xVcNqWtoGsCXB6rzjtff9sA135m4fwtb-GmLqP-shFdHWzQXQTgpKlL3_mmvgc3TletfTjPIdh8TPPJPFmsZp-T8SIxNBVdYnTqLLeEF0ISKkWBpSxNShg2TgormBNaSl4UlBVlVIUhlAsjnXZGcp3RIXjpc7e6Uofg9zr8qUZ7NR8v1GmHKMJcsuwXR_a5Zw-h-TnatlO75hjqeJ4ijDMmEKUnCvWUCU3bBususRipU80q1qxONatzzdHy1Fu8tfaCy_gLzTD9B0SWdt4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454470331</pqid></control><display><type>article</type><title>An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition</title><source>IEEE Electronic Library (IEL)</source><creator>Nidhin, K. ; Pande, Shubham ; Yadav, Shon ; Balanethiram, Suresh ; Nair, Deleep R. ; Fregonese, Sebastien ; Zimmer, Thomas ; Chakravorty, Anjan</creator><creatorcontrib>Nidhin, K. ; Pande, Shubham ; Yadav, Shon ; Balanethiram, Suresh ; Nair, Deleep R. ; Fregonese, Sebastien ; Zimmer, Thomas ; Chakravorty, Anjan</creatorcontrib><description>In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers in the framework of self-heating bringing down the overall model complexity. Compared to the traditional thermal modeling approach for an n-finger transistor where the number of circuit nodes increases as n 2 , our model requires only n-number of nodes. The proposed model is scalable for any number of fingers and with different emitter geometries. The model is validated with 3-D thermal simulations and measured data from STMicroelectronics B4T technology. The Verilog-A implemented model simulates 40% faster than the conventional model in a transient simulation of a five-finger transistor.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3021626</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bipolar transistors ; Circuits ; Couplings ; Electrothermal effect ; Emitters ; Engineering Sciences ; Heat sinks ; Heating ; Heating systems ; Integrated circuit modeling ; Mathematical models ; Micro and nanotechnologies ; Microelectronics ; multifinger transistor ; Nodes ; self-heating ; Semiconductor devices ; Silicon germanium ; silicon germanium heterojunction bipolar transistors (SiGe HBTs) ; Substrates ; Thermal analysis ; Thermal coupling ; thermal modeling ; thermal resistance ; Thermal simulation ; Three dimensional models ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2020-11, Vol.67 (11), p.5069-5075</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ca6fe5e25b792397b199dc6241cf97e74f7a995bb34bd74fbc2357c9fafc95a83</citedby><cites>FETCH-LOGICAL-c367t-ca6fe5e25b792397b199dc6241cf97e74f7a995bb34bd74fbc2357c9fafc95a83</cites><orcidid>0000-0002-0467-8164 ; 0000-0002-2289-2885 ; 0000-0002-5253-8975 ; 0000-0002-4311-0969 ; 0000-0002-9859-5262 ; 0000-0002-8563-9430 ; 0000-0002-1829-2633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9199381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9199381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03015948$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nidhin, K.</creatorcontrib><creatorcontrib>Pande, Shubham</creatorcontrib><creatorcontrib>Yadav, Shon</creatorcontrib><creatorcontrib>Balanethiram, Suresh</creatorcontrib><creatorcontrib>Nair, Deleep R.</creatorcontrib><creatorcontrib>Fregonese, Sebastien</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><creatorcontrib>Chakravorty, Anjan</creatorcontrib><title>An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers in the framework of self-heating bringing down the overall model complexity. Compared to the traditional thermal modeling approach for an n-finger transistor where the number of circuit nodes increases as n 2 , our model requires only n-number of nodes. The proposed model is scalable for any number of fingers and with different emitter geometries. The model is validated with 3-D thermal simulations and measured data from STMicroelectronics B4T technology. The Verilog-A implemented model simulates 40% faster than the conventional model in a transient simulation of a five-finger transistor.</description><subject>Bipolar transistors</subject><subject>Circuits</subject><subject>Couplings</subject><subject>Electrothermal effect</subject><subject>Emitters</subject><subject>Engineering Sciences</subject><subject>Heat sinks</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>multifinger transistor</subject><subject>Nodes</subject><subject>self-heating</subject><subject>Semiconductor devices</subject><subject>Silicon germanium</subject><subject>silicon germanium heterojunction bipolar transistors (SiGe HBTs)</subject><subject>Substrates</subject><subject>Thermal analysis</subject><subject>Thermal coupling</subject><subject>thermal modeling</subject><subject>thermal resistance</subject><subject>Thermal simulation</subject><subject>Three dimensional models</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8Bn3zozGfTPM45N2Fj4LrnkKaJy-jamXaC_70ZHXu6nMvvHO49ADxiNMIYydd8-j4iiKARRQSnJL0CA8y5SGTK0mswQAhniaQZvQV3bbuLMmWMDMB6XMOpc954W3cw39qw1xVcNqWtoGsCXB6rzjtff9sA135m4fwtb-GmLqP-shFdHWzQXQTgpKlL3_mmvgc3TletfTjPIdh8TPPJPFmsZp-T8SIxNBVdYnTqLLeEF0ISKkWBpSxNShg2TgormBNaSl4UlBVlVIUhlAsjnXZGcp3RIXjpc7e6Uofg9zr8qUZ7NR8v1GmHKMJcsuwXR_a5Zw-h-TnatlO75hjqeJ4ijDMmEKUnCvWUCU3bBususRipU80q1qxONatzzdHy1Fu8tfaCy_gLzTD9B0SWdt4</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nidhin, K.</creator><creator>Pande, Shubham</creator><creator>Yadav, Shon</creator><creator>Balanethiram, Suresh</creator><creator>Nair, Deleep R.</creator><creator>Fregonese, Sebastien</creator><creator>Zimmer, Thomas</creator><creator>Chakravorty, Anjan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0467-8164</orcidid><orcidid>https://orcid.org/0000-0002-2289-2885</orcidid><orcidid>https://orcid.org/0000-0002-5253-8975</orcidid><orcidid>https://orcid.org/0000-0002-4311-0969</orcidid><orcidid>https://orcid.org/0000-0002-9859-5262</orcidid><orcidid>https://orcid.org/0000-0002-8563-9430</orcidid><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid></search><sort><creationdate>20201101</creationdate><title>An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition</title><author>Nidhin, K. ; Pande, Shubham ; Yadav, Shon ; Balanethiram, Suresh ; Nair, Deleep R. ; Fregonese, Sebastien ; Zimmer, Thomas ; Chakravorty, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ca6fe5e25b792397b199dc6241cf97e74f7a995bb34bd74fbc2357c9fafc95a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bipolar transistors</topic><topic>Circuits</topic><topic>Couplings</topic><topic>Electrothermal effect</topic><topic>Emitters</topic><topic>Engineering Sciences</topic><topic>Heat sinks</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>multifinger transistor</topic><topic>Nodes</topic><topic>self-heating</topic><topic>Semiconductor devices</topic><topic>Silicon germanium</topic><topic>silicon germanium heterojunction bipolar transistors (SiGe HBTs)</topic><topic>Substrates</topic><topic>Thermal analysis</topic><topic>Thermal coupling</topic><topic>thermal modeling</topic><topic>thermal resistance</topic><topic>Thermal simulation</topic><topic>Three dimensional models</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nidhin, K.</creatorcontrib><creatorcontrib>Pande, Shubham</creatorcontrib><creatorcontrib>Yadav, Shon</creatorcontrib><creatorcontrib>Balanethiram, Suresh</creatorcontrib><creatorcontrib>Nair, Deleep R.</creatorcontrib><creatorcontrib>Fregonese, Sebastien</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><creatorcontrib>Chakravorty, Anjan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nidhin, K.</au><au>Pande, Shubham</au><au>Yadav, Shon</au><au>Balanethiram, Suresh</au><au>Nair, Deleep R.</au><au>Fregonese, Sebastien</au><au>Zimmer, Thomas</au><au>Chakravorty, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>67</volume><issue>11</issue><spage>5069</spage><epage>5075</epage><pages>5069-5075</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers in the framework of self-heating bringing down the overall model complexity. Compared to the traditional thermal modeling approach for an n-finger transistor where the number of circuit nodes increases as n 2 , our model requires only n-number of nodes. The proposed model is scalable for any number of fingers and with different emitter geometries. The model is validated with 3-D thermal simulations and measured data from STMicroelectronics B4T technology. The Verilog-A implemented model simulates 40% faster than the conventional model in a transient simulation of a five-finger transistor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3021626</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0467-8164</orcidid><orcidid>https://orcid.org/0000-0002-2289-2885</orcidid><orcidid>https://orcid.org/0000-0002-5253-8975</orcidid><orcidid>https://orcid.org/0000-0002-4311-0969</orcidid><orcidid>https://orcid.org/0000-0002-9859-5262</orcidid><orcidid>https://orcid.org/0000-0002-8563-9430</orcidid><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-11, Vol.67 (11), p.5069-5075
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_9199381
source IEEE Electronic Library (IEL)
subjects Bipolar transistors
Circuits
Couplings
Electrothermal effect
Emitters
Engineering Sciences
Heat sinks
Heating
Heating systems
Integrated circuit modeling
Mathematical models
Micro and nanotechnologies
Microelectronics
multifinger transistor
Nodes
self-heating
Semiconductor devices
Silicon germanium
silicon germanium heterojunction bipolar transistors (SiGe HBTs)
Substrates
Thermal analysis
Thermal coupling
thermal modeling
thermal resistance
Thermal simulation
Three dimensional models
Transistors
title An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Thermal%20Model%20for%20Multifinger%20SiGe%20HBTs%20Under%20Real%20Operating%20Condition&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Nidhin,%20K.&rft.date=2020-11-01&rft.volume=67&rft.issue=11&rft.spage=5069&rft.epage=5075&rft.pages=5069-5075&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3021626&rft_dat=%3Cproquest_RIE%3E2454470331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454470331&rft_id=info:pmid/&rft_ieee_id=9199381&rfr_iscdi=true