An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition
In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2020-11, Vol.67 (11), p.5069-5075 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5075 |
---|---|
container_issue | 11 |
container_start_page | 5069 |
container_title | IEEE transactions on electron devices |
container_volume | 67 |
creator | Nidhin, K. Pande, Shubham Yadav, Shon Balanethiram, Suresh Nair, Deleep R. Fregonese, Sebastien Zimmer, Thomas Chakravorty, Anjan |
description | In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers in the framework of self-heating bringing down the overall model complexity. Compared to the traditional thermal modeling approach for an n-finger transistor where the number of circuit nodes increases as n 2 , our model requires only n-number of nodes. The proposed model is scalable for any number of fingers and with different emitter geometries. The model is validated with 3-D thermal simulations and measured data from STMicroelectronics B4T technology. The Verilog-A implemented model simulates 40% faster than the conventional model in a transient simulation of a five-finger transistor. |
doi_str_mv | 10.1109/TED.2020.3021626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9199381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9199381</ieee_id><sourcerecordid>2454470331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ca6fe5e25b792397b199dc6241cf97e74f7a995bb34bd74fbc2357c9fafc95a83</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKfvgi8Bn3zozGfTPM45N2Fj4LrnkKaJy-jamXaC_70ZHXu6nMvvHO49ADxiNMIYydd8-j4iiKARRQSnJL0CA8y5SGTK0mswQAhniaQZvQV3bbuLMmWMDMB6XMOpc954W3cw39qw1xVcNqWtoGsCXB6rzjtff9sA135m4fwtb-GmLqP-shFdHWzQXQTgpKlL3_mmvgc3TletfTjPIdh8TPPJPFmsZp-T8SIxNBVdYnTqLLeEF0ISKkWBpSxNShg2TgormBNaSl4UlBVlVIUhlAsjnXZGcp3RIXjpc7e6Uofg9zr8qUZ7NR8v1GmHKMJcsuwXR_a5Zw-h-TnatlO75hjqeJ4ijDMmEKUnCvWUCU3bBususRipU80q1qxONatzzdHy1Fu8tfaCy_gLzTD9B0SWdt4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454470331</pqid></control><display><type>article</type><title>An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition</title><source>IEEE Electronic Library (IEL)</source><creator>Nidhin, K. ; Pande, Shubham ; Yadav, Shon ; Balanethiram, Suresh ; Nair, Deleep R. ; Fregonese, Sebastien ; Zimmer, Thomas ; Chakravorty, Anjan</creator><creatorcontrib>Nidhin, K. ; Pande, Shubham ; Yadav, Shon ; Balanethiram, Suresh ; Nair, Deleep R. ; Fregonese, Sebastien ; Zimmer, Thomas ; Chakravorty, Anjan</creatorcontrib><description>In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers in the framework of self-heating bringing down the overall model complexity. Compared to the traditional thermal modeling approach for an n-finger transistor where the number of circuit nodes increases as n 2 , our model requires only n-number of nodes. The proposed model is scalable for any number of fingers and with different emitter geometries. The model is validated with 3-D thermal simulations and measured data from STMicroelectronics B4T technology. The Verilog-A implemented model simulates 40% faster than the conventional model in a transient simulation of a five-finger transistor.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3021626</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bipolar transistors ; Circuits ; Couplings ; Electrothermal effect ; Emitters ; Engineering Sciences ; Heat sinks ; Heating ; Heating systems ; Integrated circuit modeling ; Mathematical models ; Micro and nanotechnologies ; Microelectronics ; multifinger transistor ; Nodes ; self-heating ; Semiconductor devices ; Silicon germanium ; silicon germanium heterojunction bipolar transistors (SiGe HBTs) ; Substrates ; Thermal analysis ; Thermal coupling ; thermal modeling ; thermal resistance ; Thermal simulation ; Three dimensional models ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2020-11, Vol.67 (11), p.5069-5075</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ca6fe5e25b792397b199dc6241cf97e74f7a995bb34bd74fbc2357c9fafc95a83</citedby><cites>FETCH-LOGICAL-c367t-ca6fe5e25b792397b199dc6241cf97e74f7a995bb34bd74fbc2357c9fafc95a83</cites><orcidid>0000-0002-0467-8164 ; 0000-0002-2289-2885 ; 0000-0002-5253-8975 ; 0000-0002-4311-0969 ; 0000-0002-9859-5262 ; 0000-0002-8563-9430 ; 0000-0002-1829-2633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9199381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9199381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03015948$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nidhin, K.</creatorcontrib><creatorcontrib>Pande, Shubham</creatorcontrib><creatorcontrib>Yadav, Shon</creatorcontrib><creatorcontrib>Balanethiram, Suresh</creatorcontrib><creatorcontrib>Nair, Deleep R.</creatorcontrib><creatorcontrib>Fregonese, Sebastien</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><creatorcontrib>Chakravorty, Anjan</creatorcontrib><title>An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers in the framework of self-heating bringing down the overall model complexity. Compared to the traditional thermal modeling approach for an n-finger transistor where the number of circuit nodes increases as n 2 , our model requires only n-number of nodes. The proposed model is scalable for any number of fingers and with different emitter geometries. The model is validated with 3-D thermal simulations and measured data from STMicroelectronics B4T technology. The Verilog-A implemented model simulates 40% faster than the conventional model in a transient simulation of a five-finger transistor.</description><subject>Bipolar transistors</subject><subject>Circuits</subject><subject>Couplings</subject><subject>Electrothermal effect</subject><subject>Emitters</subject><subject>Engineering Sciences</subject><subject>Heat sinks</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Integrated circuit modeling</subject><subject>Mathematical models</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>multifinger transistor</subject><subject>Nodes</subject><subject>self-heating</subject><subject>Semiconductor devices</subject><subject>Silicon germanium</subject><subject>silicon germanium heterojunction bipolar transistors (SiGe HBTs)</subject><subject>Substrates</subject><subject>Thermal analysis</subject><subject>Thermal coupling</subject><subject>thermal modeling</subject><subject>thermal resistance</subject><subject>Thermal simulation</subject><subject>Three dimensional models</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKfvgi8Bn3zozGfTPM45N2Fj4LrnkKaJy-jamXaC_70ZHXu6nMvvHO49ADxiNMIYydd8-j4iiKARRQSnJL0CA8y5SGTK0mswQAhniaQZvQV3bbuLMmWMDMB6XMOpc954W3cw39qw1xVcNqWtoGsCXB6rzjtff9sA135m4fwtb-GmLqP-shFdHWzQXQTgpKlL3_mmvgc3TletfTjPIdh8TPPJPFmsZp-T8SIxNBVdYnTqLLeEF0ISKkWBpSxNShg2TgormBNaSl4UlBVlVIUhlAsjnXZGcp3RIXjpc7e6Uofg9zr8qUZ7NR8v1GmHKMJcsuwXR_a5Zw-h-TnatlO75hjqeJ4ijDMmEKUnCvWUCU3bBususRipU80q1qxONatzzdHy1Fu8tfaCy_gLzTD9B0SWdt4</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nidhin, K.</creator><creator>Pande, Shubham</creator><creator>Yadav, Shon</creator><creator>Balanethiram, Suresh</creator><creator>Nair, Deleep R.</creator><creator>Fregonese, Sebastien</creator><creator>Zimmer, Thomas</creator><creator>Chakravorty, Anjan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0467-8164</orcidid><orcidid>https://orcid.org/0000-0002-2289-2885</orcidid><orcidid>https://orcid.org/0000-0002-5253-8975</orcidid><orcidid>https://orcid.org/0000-0002-4311-0969</orcidid><orcidid>https://orcid.org/0000-0002-9859-5262</orcidid><orcidid>https://orcid.org/0000-0002-8563-9430</orcidid><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid></search><sort><creationdate>20201101</creationdate><title>An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition</title><author>Nidhin, K. ; Pande, Shubham ; Yadav, Shon ; Balanethiram, Suresh ; Nair, Deleep R. ; Fregonese, Sebastien ; Zimmer, Thomas ; Chakravorty, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ca6fe5e25b792397b199dc6241cf97e74f7a995bb34bd74fbc2357c9fafc95a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bipolar transistors</topic><topic>Circuits</topic><topic>Couplings</topic><topic>Electrothermal effect</topic><topic>Emitters</topic><topic>Engineering Sciences</topic><topic>Heat sinks</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Integrated circuit modeling</topic><topic>Mathematical models</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>multifinger transistor</topic><topic>Nodes</topic><topic>self-heating</topic><topic>Semiconductor devices</topic><topic>Silicon germanium</topic><topic>silicon germanium heterojunction bipolar transistors (SiGe HBTs)</topic><topic>Substrates</topic><topic>Thermal analysis</topic><topic>Thermal coupling</topic><topic>thermal modeling</topic><topic>thermal resistance</topic><topic>Thermal simulation</topic><topic>Three dimensional models</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nidhin, K.</creatorcontrib><creatorcontrib>Pande, Shubham</creatorcontrib><creatorcontrib>Yadav, Shon</creatorcontrib><creatorcontrib>Balanethiram, Suresh</creatorcontrib><creatorcontrib>Nair, Deleep R.</creatorcontrib><creatorcontrib>Fregonese, Sebastien</creatorcontrib><creatorcontrib>Zimmer, Thomas</creatorcontrib><creatorcontrib>Chakravorty, Anjan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nidhin, K.</au><au>Pande, Shubham</au><au>Yadav, Shon</au><au>Balanethiram, Suresh</au><au>Nair, Deleep R.</au><au>Fregonese, Sebastien</au><au>Zimmer, Thomas</au><au>Chakravorty, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>67</volume><issue>11</issue><spage>5069</spage><epage>5075</epage><pages>5069-5075</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this work, we present a simple analytical model for electrothermal heating in multifinger bipolar transistors under realistic operating condition where all fingers are heating simultaneously. The proposed model intuitively incorporates the effect of thermal coupling among the neighboring fingers in the framework of self-heating bringing down the overall model complexity. Compared to the traditional thermal modeling approach for an n-finger transistor where the number of circuit nodes increases as n 2 , our model requires only n-number of nodes. The proposed model is scalable for any number of fingers and with different emitter geometries. The model is validated with 3-D thermal simulations and measured data from STMicroelectronics B4T technology. The Verilog-A implemented model simulates 40% faster than the conventional model in a transient simulation of a five-finger transistor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3021626</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0467-8164</orcidid><orcidid>https://orcid.org/0000-0002-2289-2885</orcidid><orcidid>https://orcid.org/0000-0002-5253-8975</orcidid><orcidid>https://orcid.org/0000-0002-4311-0969</orcidid><orcidid>https://orcid.org/0000-0002-9859-5262</orcidid><orcidid>https://orcid.org/0000-0002-8563-9430</orcidid><orcidid>https://orcid.org/0000-0002-1829-2633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2020-11, Vol.67 (11), p.5069-5075 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_9199381 |
source | IEEE Electronic Library (IEL) |
subjects | Bipolar transistors Circuits Couplings Electrothermal effect Emitters Engineering Sciences Heat sinks Heating Heating systems Integrated circuit modeling Mathematical models Micro and nanotechnologies Microelectronics multifinger transistor Nodes self-heating Semiconductor devices Silicon germanium silicon germanium heterojunction bipolar transistors (SiGe HBTs) Substrates Thermal analysis Thermal coupling thermal modeling thermal resistance Thermal simulation Three dimensional models Transistors |
title | An Efficient Thermal Model for Multifinger SiGe HBTs Under Real Operating Condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Thermal%20Model%20for%20Multifinger%20SiGe%20HBTs%20Under%20Real%20Operating%20Condition&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Nidhin,%20K.&rft.date=2020-11-01&rft.volume=67&rft.issue=11&rft.spage=5069&rft.epage=5075&rft.pages=5069-5075&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3021626&rft_dat=%3Cproquest_RIE%3E2454470331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454470331&rft_id=info:pmid/&rft_ieee_id=9199381&rfr_iscdi=true |