Big Data Management and Analytics Metamodel for IoT-Enabled Smart Buildings

Big data management and analytics, in the context of IoT (Internet of Things)-enabled smart buildings, is a challenging task. It is a diffused and complex area of knowledge due to the diversity of IoT devices and the nature of data generated by the IoT devices. Many international bodies have develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.169740-169758
Hauptverfasser: Bashir, Muhammad Rizwan, Gill, Asif Qumer, Beydoun, Ghassan, Mccusker, Brad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169758
container_issue
container_start_page 169740
container_title IEEE access
container_volume 8
creator Bashir, Muhammad Rizwan
Gill, Asif Qumer
Beydoun, Ghassan
Mccusker, Brad
description Big data management and analytics, in the context of IoT (Internet of Things)-enabled smart buildings, is a challenging task. It is a diffused and complex area of knowledge due to the diversity of IoT devices and the nature of data generated by the IoT devices. Many international bodies have developed metamodels for IoT-enabled ecosystems to allow knowledge sharing. However, these are often narrow in focus and deal with only the IoT aspects without taking into account the management and analytics of big data generated by the IoT devices. Hence, in this article we propose a metamodel for the Integrated Big Data Management and Analytics (IBDMA) framework for IoT-enabled smart buildings. The IBDMA Metamodel can be used to facilitate interoperability between existing big data management and analytics ecosystems deployed in smart buildings or other smart environments. We import the metamodel into a knowledge graph management tool and by considering a case study we validate the metamodel using this tool. The evaluation results demonstrate that IBDMA Metamodel is indeed suitable for its intended purpose.
doi_str_mv 10.1109/ACCESS.2020.3024066
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9195814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195814</ieee_id><doaj_id>oai_doaj_org_article_b750788672c54ae69ba64384a537c31d</doaj_id><sourcerecordid>2454681062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7547656e5e998e9f6cdace3aed269221a6aaac3f283fa51304e36e7c4d6cd0453</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIoMIXcLHEOcXv2MdSClSAOBTO1tbeVKnSGOL00L_HEFSxl12NZmZ3NUVxzeiUMWpvZ_P5YrWacsrpVFAuqdYnxQVn2pZCCX36bz4vrlLa0lwmQ6q6KJ7vmg25hwHIK3SwwR12A4EukFkH7WFofCKvOMAuBmxJHXuyjO_looN1i4GsdtAP5G7ftKHpNumyOKuhTXj11yfFx8Piff5Uvrw9Luezl9JLZYayUrLSSqNCaw3aWvsAHgVg4NpyzkADgBc1N6IGxQSVKDRWXobMpFKJSbEcfUOErfvsm3zGwUVo3C8Q-43LdzW-RbeuFK2M0RX3SgJquwYthZGgROUFC9nrZvT67OPXHtPgtnHf59-T41JJbRjVPLPEyPJ9TKnH-riVUfcTghtDcD8huL8Qsup6VDWIeFRYZpVhUnwD3BiAuQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454681062</pqid></control><display><type>article</type><title>Big Data Management and Analytics Metamodel for IoT-Enabled Smart Buildings</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bashir, Muhammad Rizwan ; Gill, Asif Qumer ; Beydoun, Ghassan ; Mccusker, Brad</creator><creatorcontrib>Bashir, Muhammad Rizwan ; Gill, Asif Qumer ; Beydoun, Ghassan ; Mccusker, Brad</creatorcontrib><description>Big data management and analytics, in the context of IoT (Internet of Things)-enabled smart buildings, is a challenging task. It is a diffused and complex area of knowledge due to the diversity of IoT devices and the nature of data generated by the IoT devices. Many international bodies have developed metamodels for IoT-enabled ecosystems to allow knowledge sharing. However, these are often narrow in focus and deal with only the IoT aspects without taking into account the management and analytics of big data generated by the IoT devices. Hence, in this article we propose a metamodel for the Integrated Big Data Management and Analytics (IBDMA) framework for IoT-enabled smart buildings. The IBDMA Metamodel can be used to facilitate interoperability between existing big data management and analytics ecosystems deployed in smart buildings or other smart environments. We import the metamodel into a knowledge graph management tool and by considering a case study we validate the metamodel using this tool. The evaluation results demonstrate that IBDMA Metamodel is indeed suitable for its intended purpose.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3024066</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Architecture ; Big Data ; big data management ; Biological system modeling ; Data analysis ; Data management ; Data models ; Ecosystems ; Internet of Things ; Interoperability ; IoT ; Knowledge bases (artificial intelligence) ; Mathematical analysis ; metamodel ; Metamodels ; Smart buildings ; Strategic management ; Unified modeling language</subject><ispartof>IEEE access, 2020, Vol.8, p.169740-169758</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7547656e5e998e9f6cdace3aed269221a6aaac3f283fa51304e36e7c4d6cd0453</citedby><cites>FETCH-LOGICAL-c458t-7547656e5e998e9f6cdace3aed269221a6aaac3f283fa51304e36e7c4d6cd0453</cites><orcidid>0000-0001-6239-6280 ; 0000-0001-7128-3317 ; 0000-0001-8087-5445 ; 0000-0001-6326-9267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9195814$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Bashir, Muhammad Rizwan</creatorcontrib><creatorcontrib>Gill, Asif Qumer</creatorcontrib><creatorcontrib>Beydoun, Ghassan</creatorcontrib><creatorcontrib>Mccusker, Brad</creatorcontrib><title>Big Data Management and Analytics Metamodel for IoT-Enabled Smart Buildings</title><title>IEEE access</title><addtitle>Access</addtitle><description>Big data management and analytics, in the context of IoT (Internet of Things)-enabled smart buildings, is a challenging task. It is a diffused and complex area of knowledge due to the diversity of IoT devices and the nature of data generated by the IoT devices. Many international bodies have developed metamodels for IoT-enabled ecosystems to allow knowledge sharing. However, these are often narrow in focus and deal with only the IoT aspects without taking into account the management and analytics of big data generated by the IoT devices. Hence, in this article we propose a metamodel for the Integrated Big Data Management and Analytics (IBDMA) framework for IoT-enabled smart buildings. The IBDMA Metamodel can be used to facilitate interoperability between existing big data management and analytics ecosystems deployed in smart buildings or other smart environments. We import the metamodel into a knowledge graph management tool and by considering a case study we validate the metamodel using this tool. The evaluation results demonstrate that IBDMA Metamodel is indeed suitable for its intended purpose.</description><subject>Architecture</subject><subject>Big Data</subject><subject>big data management</subject><subject>Biological system modeling</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data models</subject><subject>Ecosystems</subject><subject>Internet of Things</subject><subject>Interoperability</subject><subject>IoT</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Mathematical analysis</subject><subject>metamodel</subject><subject>Metamodels</subject><subject>Smart buildings</subject><subject>Strategic management</subject><subject>Unified modeling language</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIoMIXcLHEOcXv2MdSClSAOBTO1tbeVKnSGOL00L_HEFSxl12NZmZ3NUVxzeiUMWpvZ_P5YrWacsrpVFAuqdYnxQVn2pZCCX36bz4vrlLa0lwmQ6q6KJ7vmg25hwHIK3SwwR12A4EukFkH7WFofCKvOMAuBmxJHXuyjO_looN1i4GsdtAP5G7ftKHpNumyOKuhTXj11yfFx8Piff5Uvrw9Luezl9JLZYayUrLSSqNCaw3aWvsAHgVg4NpyzkADgBc1N6IGxQSVKDRWXobMpFKJSbEcfUOErfvsm3zGwUVo3C8Q-43LdzW-RbeuFK2M0RX3SgJquwYthZGgROUFC9nrZvT67OPXHtPgtnHf59-T41JJbRjVPLPEyPJ9TKnH-riVUfcTghtDcD8huL8Qsup6VDWIeFRYZpVhUnwD3BiAuQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bashir, Muhammad Rizwan</creator><creator>Gill, Asif Qumer</creator><creator>Beydoun, Ghassan</creator><creator>Mccusker, Brad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6239-6280</orcidid><orcidid>https://orcid.org/0000-0001-7128-3317</orcidid><orcidid>https://orcid.org/0000-0001-8087-5445</orcidid><orcidid>https://orcid.org/0000-0001-6326-9267</orcidid></search><sort><creationdate>2020</creationdate><title>Big Data Management and Analytics Metamodel for IoT-Enabled Smart Buildings</title><author>Bashir, Muhammad Rizwan ; Gill, Asif Qumer ; Beydoun, Ghassan ; Mccusker, Brad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7547656e5e998e9f6cdace3aed269221a6aaac3f283fa51304e36e7c4d6cd0453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Big Data</topic><topic>big data management</topic><topic>Biological system modeling</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data models</topic><topic>Ecosystems</topic><topic>Internet of Things</topic><topic>Interoperability</topic><topic>IoT</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Mathematical analysis</topic><topic>metamodel</topic><topic>Metamodels</topic><topic>Smart buildings</topic><topic>Strategic management</topic><topic>Unified modeling language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashir, Muhammad Rizwan</creatorcontrib><creatorcontrib>Gill, Asif Qumer</creatorcontrib><creatorcontrib>Beydoun, Ghassan</creatorcontrib><creatorcontrib>Mccusker, Brad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashir, Muhammad Rizwan</au><au>Gill, Asif Qumer</au><au>Beydoun, Ghassan</au><au>Mccusker, Brad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big Data Management and Analytics Metamodel for IoT-Enabled Smart Buildings</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>169740</spage><epage>169758</epage><pages>169740-169758</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Big data management and analytics, in the context of IoT (Internet of Things)-enabled smart buildings, is a challenging task. It is a diffused and complex area of knowledge due to the diversity of IoT devices and the nature of data generated by the IoT devices. Many international bodies have developed metamodels for IoT-enabled ecosystems to allow knowledge sharing. However, these are often narrow in focus and deal with only the IoT aspects without taking into account the management and analytics of big data generated by the IoT devices. Hence, in this article we propose a metamodel for the Integrated Big Data Management and Analytics (IBDMA) framework for IoT-enabled smart buildings. The IBDMA Metamodel can be used to facilitate interoperability between existing big data management and analytics ecosystems deployed in smart buildings or other smart environments. We import the metamodel into a knowledge graph management tool and by considering a case study we validate the metamodel using this tool. The evaluation results demonstrate that IBDMA Metamodel is indeed suitable for its intended purpose.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3024066</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6239-6280</orcidid><orcidid>https://orcid.org/0000-0001-7128-3317</orcidid><orcidid>https://orcid.org/0000-0001-8087-5445</orcidid><orcidid>https://orcid.org/0000-0001-6326-9267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.169740-169758
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9195814
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Architecture
Big Data
big data management
Biological system modeling
Data analysis
Data management
Data models
Ecosystems
Internet of Things
Interoperability
IoT
Knowledge bases (artificial intelligence)
Mathematical analysis
metamodel
Metamodels
Smart buildings
Strategic management
Unified modeling language
title Big Data Management and Analytics Metamodel for IoT-Enabled Smart Buildings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20Data%20Management%20and%20Analytics%20Metamodel%20for%20IoT-Enabled%20Smart%20Buildings&rft.jtitle=IEEE%20access&rft.au=Bashir,%20Muhammad%20Rizwan&rft.date=2020&rft.volume=8&rft.spage=169740&rft.epage=169758&rft.pages=169740-169758&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3024066&rft_dat=%3Cproquest_ieee_%3E2454681062%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454681062&rft_id=info:pmid/&rft_ieee_id=9195814&rft_doaj_id=oai_doaj_org_article_b750788672c54ae69ba64384a537c31d&rfr_iscdi=true