Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models

Blind source extraction (BSE) aims at recovering an unknown source signal of interest from the observation of instantaneous linear mixtures of the sources. This paper presents Cramér-Rao lower bounds (CRLB) for the complex-valued BSE problem based on the assumption that the target signal is independ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.5230-5243
Hauptverfasser: Kautsky, Vaclav, Koldovsky, Zbynek, Tichavsky, Petr, Zarzoso, Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5243
container_issue
container_start_page 5230
container_title IEEE transactions on signal processing
container_volume 68
creator Kautsky, Vaclav
Koldovsky, Zbynek
Tichavsky, Petr
Zarzoso, Vicente
description Blind source extraction (BSE) aims at recovering an unknown source signal of interest from the observation of instantaneous linear mixtures of the sources. This paper presents Cramér-Rao lower bounds (CRLB) for the complex-valued BSE problem based on the assumption that the target signal is independent of the other signals. The target source is assumed to be non-Gaussian or non-circular Gaussian while the other signals (background) are circular Gaussian or non-Gaussian. The results confirm some previous observations known for the real domain and yield new results for the complex domain. Also, the CRLB for independent component extraction (ICE) is shown to coincide with that for independent component analysis (ICA) when the non-Gaussianity of background is taken into account. Second, we extend the CRLB analysis to piecewise determined mixing models, where the observed signals are assumed to obey the determined mixing model within short blocks where the mixing matrices can be varying from block to block. This model has applications, for instance, when separating dynamic mixtures. Either the mixing vector or the separating vector corresponding to the target source is assumed to be constant across the blocks. The CRLBs for the parameters of these models bring new performance limits for the BSE problem.
doi_str_mv 10.1109/TSP.2020.3022827
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9195105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195105</ieee_id><sourcerecordid>2448452807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-cf0c3ba600fa5396074582db003f9daa33a47803c975fe9a9b2665451c65eb943</originalsourceid><addsrcrecordid>eNpNkUtLxEAMgIso-LwLXgqePHTNPNvxpusTVhRfeBtm21RHujPrTFfXn-Tv8I_ZuiJekpB8CYEvSbYJDAgBtX93ez2gQGHAgNKC5kvJGlGcZMBzudzVIFgmivxxNVmP8QWAcK7kWvIxDGby9RmyG-PTIz9zVUxrH9Khn0wbnGcPpplhlV64CqfYBdf-jLzrq5N5G0zZWu8O0mNsMUys62DjqvTaYonvNuL_waWdW_eUXvoKm7iZrNSmibj1mzeS-9OTu-F5Nro6uxgejrKSqrzNyhpKNjYSoDaCKQk5FwWtxgCsVpUxjBmeF8BKlYsalVFjKqXggpRS4FhxtpHsLe4-m0ZPg52Y8KG9sfr8cKT7HjAhmSTwRjp2d8FOg3-dYWz1i58F172nKecFF7SAvKNgQZXBxxiw_jtLQPcydCdD9zL0r4xuZWexYhHxD1dEiV7MN1umhfY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448452807</pqid></control><display><type>article</type><title>Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models</title><source>IEEE Electronic Library (IEL)</source><creator>Kautsky, Vaclav ; Koldovsky, Zbynek ; Tichavsky, Petr ; Zarzoso, Vicente</creator><creatorcontrib>Kautsky, Vaclav ; Koldovsky, Zbynek ; Tichavsky, Petr ; Zarzoso, Vicente</creatorcontrib><description>Blind source extraction (BSE) aims at recovering an unknown source signal of interest from the observation of instantaneous linear mixtures of the sources. This paper presents Cramér-Rao lower bounds (CRLB) for the complex-valued BSE problem based on the assumption that the target signal is independent of the other signals. The target source is assumed to be non-Gaussian or non-circular Gaussian while the other signals (background) are circular Gaussian or non-Gaussian. The results confirm some previous observations known for the real domain and yield new results for the complex domain. Also, the CRLB for independent component extraction (ICE) is shown to coincide with that for independent component analysis (ICA) when the non-Gaussianity of background is taken into account. Second, we extend the CRLB analysis to piecewise determined mixing models, where the observed signals are assumed to obey the determined mixing model within short blocks where the mixing matrices can be varying from block to block. This model has applications, for instance, when separating dynamic mixtures. Either the mixing vector or the separating vector corresponding to the target source is assumed to be constant across the blocks. The CRLBs for the parameters of these models bring new performance limits for the BSE problem.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.3022827</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Blind source extraction ; Computational modeling ; Computer Science ; Cramér-Rao lower bound ; Domains ; dynamic mixing models ; Ice ; independent componenet analysis ; Independent component analysis ; independent component extraction ; Indexes ; Lower bounds ; Signal and Image Processing ; Time-frequency analysis</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.5230-5243</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-cf0c3ba600fa5396074582db003f9daa33a47803c975fe9a9b2665451c65eb943</citedby><cites>FETCH-LOGICAL-c297t-cf0c3ba600fa5396074582db003f9daa33a47803c975fe9a9b2665451c65eb943</cites><orcidid>0000-0001-9286-1163 ; 0000-0002-1791-5675 ; 0000-0003-0621-4766 ; 0000-0002-7042-0858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9195105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9195105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03563610$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kautsky, Vaclav</creatorcontrib><creatorcontrib>Koldovsky, Zbynek</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Zarzoso, Vicente</creatorcontrib><title>Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Blind source extraction (BSE) aims at recovering an unknown source signal of interest from the observation of instantaneous linear mixtures of the sources. This paper presents Cramér-Rao lower bounds (CRLB) for the complex-valued BSE problem based on the assumption that the target signal is independent of the other signals. The target source is assumed to be non-Gaussian or non-circular Gaussian while the other signals (background) are circular Gaussian or non-Gaussian. The results confirm some previous observations known for the real domain and yield new results for the complex domain. Also, the CRLB for independent component extraction (ICE) is shown to coincide with that for independent component analysis (ICA) when the non-Gaussianity of background is taken into account. Second, we extend the CRLB analysis to piecewise determined mixing models, where the observed signals are assumed to obey the determined mixing model within short blocks where the mixing matrices can be varying from block to block. This model has applications, for instance, when separating dynamic mixtures. Either the mixing vector or the separating vector corresponding to the target source is assumed to be constant across the blocks. The CRLBs for the parameters of these models bring new performance limits for the BSE problem.</description><subject>Analytical models</subject><subject>Blind source extraction</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Cramér-Rao lower bound</subject><subject>Domains</subject><subject>dynamic mixing models</subject><subject>Ice</subject><subject>independent componenet analysis</subject><subject>Independent component analysis</subject><subject>independent component extraction</subject><subject>Indexes</subject><subject>Lower bounds</subject><subject>Signal and Image Processing</subject><subject>Time-frequency analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkUtLxEAMgIso-LwLXgqePHTNPNvxpusTVhRfeBtm21RHujPrTFfXn-Tv8I_ZuiJekpB8CYEvSbYJDAgBtX93ez2gQGHAgNKC5kvJGlGcZMBzudzVIFgmivxxNVmP8QWAcK7kWvIxDGby9RmyG-PTIz9zVUxrH9Khn0wbnGcPpplhlV64CqfYBdf-jLzrq5N5G0zZWu8O0mNsMUys62DjqvTaYonvNuL_waWdW_eUXvoKm7iZrNSmibj1mzeS-9OTu-F5Nro6uxgejrKSqrzNyhpKNjYSoDaCKQk5FwWtxgCsVpUxjBmeF8BKlYsalVFjKqXggpRS4FhxtpHsLe4-m0ZPg52Y8KG9sfr8cKT7HjAhmSTwRjp2d8FOg3-dYWz1i58F172nKecFF7SAvKNgQZXBxxiw_jtLQPcydCdD9zL0r4xuZWexYhHxD1dEiV7MN1umhfY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kautsky, Vaclav</creator><creator>Koldovsky, Zbynek</creator><creator>Tichavsky, Petr</creator><creator>Zarzoso, Vicente</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9286-1163</orcidid><orcidid>https://orcid.org/0000-0002-1791-5675</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0002-7042-0858</orcidid></search><sort><creationdate>2020</creationdate><title>Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models</title><author>Kautsky, Vaclav ; Koldovsky, Zbynek ; Tichavsky, Petr ; Zarzoso, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-cf0c3ba600fa5396074582db003f9daa33a47803c975fe9a9b2665451c65eb943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Blind source extraction</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Cramér-Rao lower bound</topic><topic>Domains</topic><topic>dynamic mixing models</topic><topic>Ice</topic><topic>independent componenet analysis</topic><topic>Independent component analysis</topic><topic>independent component extraction</topic><topic>Indexes</topic><topic>Lower bounds</topic><topic>Signal and Image Processing</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kautsky, Vaclav</creatorcontrib><creatorcontrib>Koldovsky, Zbynek</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Zarzoso, Vicente</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kautsky, Vaclav</au><au>Koldovsky, Zbynek</au><au>Tichavsky, Petr</au><au>Zarzoso, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>5230</spage><epage>5243</epage><pages>5230-5243</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Blind source extraction (BSE) aims at recovering an unknown source signal of interest from the observation of instantaneous linear mixtures of the sources. This paper presents Cramér-Rao lower bounds (CRLB) for the complex-valued BSE problem based on the assumption that the target signal is independent of the other signals. The target source is assumed to be non-Gaussian or non-circular Gaussian while the other signals (background) are circular Gaussian or non-Gaussian. The results confirm some previous observations known for the real domain and yield new results for the complex domain. Also, the CRLB for independent component extraction (ICE) is shown to coincide with that for independent component analysis (ICA) when the non-Gaussianity of background is taken into account. Second, we extend the CRLB analysis to piecewise determined mixing models, where the observed signals are assumed to obey the determined mixing model within short blocks where the mixing matrices can be varying from block to block. This model has applications, for instance, when separating dynamic mixtures. Either the mixing vector or the separating vector corresponding to the target source is assumed to be constant across the blocks. The CRLBs for the parameters of these models bring new performance limits for the BSE problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.3022827</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9286-1163</orcidid><orcidid>https://orcid.org/0000-0002-1791-5675</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0002-7042-0858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2020, Vol.68, p.5230-5243
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_9195105
source IEEE Electronic Library (IEL)
subjects Analytical models
Blind source extraction
Computational modeling
Computer Science
Cramér-Rao lower bound
Domains
dynamic mixing models
Ice
independent componenet analysis
Independent component analysis
independent component extraction
Indexes
Lower bounds
Signal and Image Processing
Time-frequency analysis
title Cramér-Rao Bounds for Complex-Valued Independent Component Extraction: Determined and Piecewise Determined Mixing Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cram%C3%A9r-Rao%20Bounds%20for%20Complex-Valued%20Independent%20Component%20Extraction:%20Determined%20and%20Piecewise%20Determined%20Mixing%20Models&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kautsky,%20Vaclav&rft.date=2020&rft.volume=68&rft.spage=5230&rft.epage=5243&rft.pages=5230-5243&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.3022827&rft_dat=%3Cproquest_RIE%3E2448452807%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448452807&rft_id=info:pmid/&rft_ieee_id=9195105&rfr_iscdi=true