A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability

This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-11
Hauptverfasser: Youn, Wonkeun, Ko, Nak Yong, Gadsden, Stephen Andrew, Myung, Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Youn, Wonkeun
Ko, Nak Yong
Gadsden, Stephen Andrew
Myung, Hyun
description This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement loss probability are jointly inferred based on the variational Bayesian (VB) approach. In particular, a new likelihood definition is derived for the mode probability update process of the IMM-AKF algorithm. Experiments demonstrate the superiority of the proposed IMM-AKF algorithm over existing filtering algorithms by adaptively estimating the unknown time-varying measurement loss probability.
doi_str_mv 10.1109/TIM.2020.3023213
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9194047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9194047</ieee_id><sourcerecordid>2468750835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bc0962672e7785d088d0164b1f417e8ac97f3f7aa438484a8494c6bc76240f303</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzH9mPYylWi4l6aA-elk2ygdQ0GzdJpf_elBZPwwvPOzM8CN0TmBEC-mm9SmcUKMwYUEYJu0ATEscy0kLQSzQBICrSPBbX6KbrtgAgBZcT9DXH737vapwOdV-1tYtSX4xxXti2r_YOv9l6Zxu8rOreBVz6gMe0ab4b_9vg1NluCG7nmh4nvuvwZ_CZzaq66g-36Kq0defuznOKNsvn9eI1Sj5eVot5EuVUkz7KctCCCkmdlCouQKkCiOAZKTmRTtlcy5KV0lrOFFfcKq55LrJcCsqhZMCm6PG0tw3-Z3Bdb7Z-CM140lAulIxBsXik4ETlYfwzuNK0odrZcDAEzFGgGQWao0BzFjhWHk6Vyjn3j2uiOXDJ_gCMQ2rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468750835</pqid></control><display><type>article</type><title>A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability</title><source>IEEE Electronic Library (IEL)</source><creator>Youn, Wonkeun ; Ko, Nak Yong ; Gadsden, Stephen Andrew ; Myung, Hyun</creator><creatorcontrib>Youn, Wonkeun ; Ko, Nak Yong ; Gadsden, Stephen Andrew ; Myung, Hyun</creatorcontrib><description>This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement loss probability are jointly inferred based on the variational Bayesian (VB) approach. In particular, a new likelihood definition is derived for the mode probability update process of the IMM-AKF algorithm. Experiments demonstrate the superiority of the proposed IMM-AKF algorithm over existing filtering algorithms by adaptively estimating the unknown time-varying measurement loss probability.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3023213</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Global Positioning System ; Inference algorithms ; Interacting multiple model ; Kalman filter (KF) ; Kalman filters ; localization ; Loss measurement ; measurement loss ; Measurement uncertainty ; Noise measurement ; Random variables ; Time measurement ; variational Bayesian (VB) inference</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bc0962672e7785d088d0164b1f417e8ac97f3f7aa438484a8494c6bc76240f303</citedby><cites>FETCH-LOGICAL-c291t-bc0962672e7785d088d0164b1f417e8ac97f3f7aa438484a8494c6bc76240f303</cites><orcidid>0000-0002-5799-2026 ; 0000-0003-4277-3450 ; 0000-0001-6954-9059 ; 0000-0003-3749-0878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9194047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9194047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Youn, Wonkeun</creatorcontrib><creatorcontrib>Ko, Nak Yong</creatorcontrib><creatorcontrib>Gadsden, Stephen Andrew</creatorcontrib><creatorcontrib>Myung, Hyun</creatorcontrib><title>A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement loss probability are jointly inferred based on the variational Bayesian (VB) approach. In particular, a new likelihood definition is derived for the mode probability update process of the IMM-AKF algorithm. Experiments demonstrate the superiority of the proposed IMM-AKF algorithm over existing filtering algorithms by adaptively estimating the unknown time-varying measurement loss probability.</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Global Positioning System</subject><subject>Inference algorithms</subject><subject>Interacting multiple model</subject><subject>Kalman filter (KF)</subject><subject>Kalman filters</subject><subject>localization</subject><subject>Loss measurement</subject><subject>measurement loss</subject><subject>Measurement uncertainty</subject><subject>Noise measurement</subject><subject>Random variables</subject><subject>Time measurement</subject><subject>variational Bayesian (VB) inference</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzH9mPYylWi4l6aA-elk2ygdQ0GzdJpf_elBZPwwvPOzM8CN0TmBEC-mm9SmcUKMwYUEYJu0ATEscy0kLQSzQBICrSPBbX6KbrtgAgBZcT9DXH737vapwOdV-1tYtSX4xxXti2r_YOv9l6Zxu8rOreBVz6gMe0ab4b_9vg1NluCG7nmh4nvuvwZ_CZzaq66g-36Kq0defuznOKNsvn9eI1Sj5eVot5EuVUkz7KctCCCkmdlCouQKkCiOAZKTmRTtlcy5KV0lrOFFfcKq55LrJcCsqhZMCm6PG0tw3-Z3Bdb7Z-CM140lAulIxBsXik4ETlYfwzuNK0odrZcDAEzFGgGQWao0BzFjhWHk6Vyjn3j2uiOXDJ_gCMQ2rA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Youn, Wonkeun</creator><creator>Ko, Nak Yong</creator><creator>Gadsden, Stephen Andrew</creator><creator>Myung, Hyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5799-2026</orcidid><orcidid>https://orcid.org/0000-0003-4277-3450</orcidid><orcidid>https://orcid.org/0000-0001-6954-9059</orcidid><orcidid>https://orcid.org/0000-0003-3749-0878</orcidid></search><sort><creationdate>2021</creationdate><title>A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability</title><author>Youn, Wonkeun ; Ko, Nak Yong ; Gadsden, Stephen Andrew ; Myung, Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bc0962672e7785d088d0164b1f417e8ac97f3f7aa438484a8494c6bc76240f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Global Positioning System</topic><topic>Inference algorithms</topic><topic>Interacting multiple model</topic><topic>Kalman filter (KF)</topic><topic>Kalman filters</topic><topic>localization</topic><topic>Loss measurement</topic><topic>measurement loss</topic><topic>Measurement uncertainty</topic><topic>Noise measurement</topic><topic>Random variables</topic><topic>Time measurement</topic><topic>variational Bayesian (VB) inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youn, Wonkeun</creatorcontrib><creatorcontrib>Ko, Nak Yong</creatorcontrib><creatorcontrib>Gadsden, Stephen Andrew</creatorcontrib><creatorcontrib>Myung, Hyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youn, Wonkeun</au><au>Ko, Nak Yong</au><au>Gadsden, Stephen Andrew</au><au>Myung, Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement loss probability are jointly inferred based on the variational Bayesian (VB) approach. In particular, a new likelihood definition is derived for the mode probability update process of the IMM-AKF algorithm. Experiments demonstrate the superiority of the proposed IMM-AKF algorithm over existing filtering algorithms by adaptively estimating the unknown time-varying measurement loss probability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3023213</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5799-2026</orcidid><orcidid>https://orcid.org/0000-0003-4277-3450</orcidid><orcidid>https://orcid.org/0000-0001-6954-9059</orcidid><orcidid>https://orcid.org/0000-0003-3749-0878</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-11
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_9194047
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Algorithms
Global Positioning System
Inference algorithms
Interacting multiple model
Kalman filter (KF)
Kalman filters
localization
Loss measurement
measurement loss
Measurement uncertainty
Noise measurement
Random variables
Time measurement
variational Bayesian (VB) inference
title A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Multiple-Model%20Adaptive%20Kalman%20Filter%20for%20an%20Unknown%20Measurement%20Loss%20Probability&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Youn,%20Wonkeun&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3023213&rft_dat=%3Cproquest_RIE%3E2468750835%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468750835&rft_id=info:pmid/&rft_ieee_id=9194047&rfr_iscdi=true