A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability
This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 70 |
creator | Youn, Wonkeun Ko, Nak Yong Gadsden, Stephen Andrew Myung, Hyun |
description | This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement loss probability are jointly inferred based on the variational Bayesian (VB) approach. In particular, a new likelihood definition is derived for the mode probability update process of the IMM-AKF algorithm. Experiments demonstrate the superiority of the proposed IMM-AKF algorithm over existing filtering algorithms by adaptively estimating the unknown time-varying measurement loss probability. |
doi_str_mv | 10.1109/TIM.2020.3023213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9194047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9194047</ieee_id><sourcerecordid>2468750835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bc0962672e7785d088d0164b1f417e8ac97f3f7aa438484a8494c6bc76240f303</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzH9mPYylWi4l6aA-elk2ygdQ0GzdJpf_elBZPwwvPOzM8CN0TmBEC-mm9SmcUKMwYUEYJu0ATEscy0kLQSzQBICrSPBbX6KbrtgAgBZcT9DXH737vapwOdV-1tYtSX4xxXti2r_YOv9l6Zxu8rOreBVz6gMe0ab4b_9vg1NluCG7nmh4nvuvwZ_CZzaq66g-36Kq0defuznOKNsvn9eI1Sj5eVot5EuVUkz7KctCCCkmdlCouQKkCiOAZKTmRTtlcy5KV0lrOFFfcKq55LrJcCsqhZMCm6PG0tw3-Z3Bdb7Z-CM140lAulIxBsXik4ETlYfwzuNK0odrZcDAEzFGgGQWao0BzFjhWHk6Vyjn3j2uiOXDJ_gCMQ2rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468750835</pqid></control><display><type>article</type><title>A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability</title><source>IEEE Electronic Library (IEL)</source><creator>Youn, Wonkeun ; Ko, Nak Yong ; Gadsden, Stephen Andrew ; Myung, Hyun</creator><creatorcontrib>Youn, Wonkeun ; Ko, Nak Yong ; Gadsden, Stephen Andrew ; Myung, Hyun</creatorcontrib><description>This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement loss probability are jointly inferred based on the variational Bayesian (VB) approach. In particular, a new likelihood definition is derived for the mode probability update process of the IMM-AKF algorithm. Experiments demonstrate the superiority of the proposed IMM-AKF algorithm over existing filtering algorithms by adaptively estimating the unknown time-varying measurement loss probability.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2020.3023213</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Global Positioning System ; Inference algorithms ; Interacting multiple model ; Kalman filter (KF) ; Kalman filters ; localization ; Loss measurement ; measurement loss ; Measurement uncertainty ; Noise measurement ; Random variables ; Time measurement ; variational Bayesian (VB) inference</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bc0962672e7785d088d0164b1f417e8ac97f3f7aa438484a8494c6bc76240f303</citedby><cites>FETCH-LOGICAL-c291t-bc0962672e7785d088d0164b1f417e8ac97f3f7aa438484a8494c6bc76240f303</cites><orcidid>0000-0002-5799-2026 ; 0000-0003-4277-3450 ; 0000-0001-6954-9059 ; 0000-0003-3749-0878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9194047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9194047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Youn, Wonkeun</creatorcontrib><creatorcontrib>Ko, Nak Yong</creatorcontrib><creatorcontrib>Gadsden, Stephen Andrew</creatorcontrib><creatorcontrib>Myung, Hyun</creatorcontrib><title>A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement loss probability are jointly inferred based on the variational Bayesian (VB) approach. In particular, a new likelihood definition is derived for the mode probability update process of the IMM-AKF algorithm. Experiments demonstrate the superiority of the proposed IMM-AKF algorithm over existing filtering algorithms by adaptively estimating the unknown time-varying measurement loss probability.</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Global Positioning System</subject><subject>Inference algorithms</subject><subject>Interacting multiple model</subject><subject>Kalman filter (KF)</subject><subject>Kalman filters</subject><subject>localization</subject><subject>Loss measurement</subject><subject>measurement loss</subject><subject>Measurement uncertainty</subject><subject>Noise measurement</subject><subject>Random variables</subject><subject>Time measurement</subject><subject>variational Bayesian (VB) inference</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6mzH9mPYylWi4l6aA-elk2ygdQ0GzdJpf_elBZPwwvPOzM8CN0TmBEC-mm9SmcUKMwYUEYJu0ATEscy0kLQSzQBICrSPBbX6KbrtgAgBZcT9DXH737vapwOdV-1tYtSX4xxXti2r_YOv9l6Zxu8rOreBVz6gMe0ab4b_9vg1NluCG7nmh4nvuvwZ_CZzaq66g-36Kq0defuznOKNsvn9eI1Sj5eVot5EuVUkz7KctCCCkmdlCouQKkCiOAZKTmRTtlcy5KV0lrOFFfcKq55LrJcCsqhZMCm6PG0tw3-Z3Bdb7Z-CM140lAulIxBsXik4ETlYfwzuNK0odrZcDAEzFGgGQWao0BzFjhWHk6Vyjn3j2uiOXDJ_gCMQ2rA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Youn, Wonkeun</creator><creator>Ko, Nak Yong</creator><creator>Gadsden, Stephen Andrew</creator><creator>Myung, Hyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5799-2026</orcidid><orcidid>https://orcid.org/0000-0003-4277-3450</orcidid><orcidid>https://orcid.org/0000-0001-6954-9059</orcidid><orcidid>https://orcid.org/0000-0003-3749-0878</orcidid></search><sort><creationdate>2021</creationdate><title>A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability</title><author>Youn, Wonkeun ; Ko, Nak Yong ; Gadsden, Stephen Andrew ; Myung, Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bc0962672e7785d088d0164b1f417e8ac97f3f7aa438484a8494c6bc76240f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Global Positioning System</topic><topic>Inference algorithms</topic><topic>Interacting multiple model</topic><topic>Kalman filter (KF)</topic><topic>Kalman filters</topic><topic>localization</topic><topic>Loss measurement</topic><topic>measurement loss</topic><topic>Measurement uncertainty</topic><topic>Noise measurement</topic><topic>Random variables</topic><topic>Time measurement</topic><topic>variational Bayesian (VB) inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youn, Wonkeun</creatorcontrib><creatorcontrib>Ko, Nak Yong</creatorcontrib><creatorcontrib>Gadsden, Stephen Andrew</creatorcontrib><creatorcontrib>Myung, Hyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youn, Wonkeun</au><au>Ko, Nak Yong</au><au>Gadsden, Stephen Andrew</au><au>Myung, Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This article proposes a novel adaptive Kalman filter (AKF) to estimate the unknown probability of measurement loss using the interacting multiple-model (IMM) filtering framework, yielding the IMM-AKF algorithm. In the proposed IMM-AKF algorithm, the state, Bernoulli random variable, and measurement loss probability are jointly inferred based on the variational Bayesian (VB) approach. In particular, a new likelihood definition is derived for the mode probability update process of the IMM-AKF algorithm. Experiments demonstrate the superiority of the proposed IMM-AKF algorithm over existing filtering algorithms by adaptively estimating the unknown time-varying measurement loss probability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2020.3023213</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5799-2026</orcidid><orcidid>https://orcid.org/0000-0003-4277-3450</orcidid><orcidid>https://orcid.org/0000-0001-6954-9059</orcidid><orcidid>https://orcid.org/0000-0003-3749-0878</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-11 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_9194047 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters Algorithms Global Positioning System Inference algorithms Interacting multiple model Kalman filter (KF) Kalman filters localization Loss measurement measurement loss Measurement uncertainty Noise measurement Random variables Time measurement variational Bayesian (VB) inference |
title | A Novel Multiple-Model Adaptive Kalman Filter for an Unknown Measurement Loss Probability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Multiple-Model%20Adaptive%20Kalman%20Filter%20for%20an%20Unknown%20Measurement%20Loss%20Probability&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Youn,%20Wonkeun&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2020.3023213&rft_dat=%3Cproquest_RIE%3E2468750835%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468750835&rft_id=info:pmid/&rft_ieee_id=9194047&rfr_iscdi=true |