Finding failures by cluster analysis of execution profiles
We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering pr...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 348 |
---|---|
container_issue | |
container_start_page | 339 |
container_title | |
container_volume | |
creator | Dickinson, W. Leon, D. Fodgurski, A. |
description | We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering procedure involves a choice of a sampling strategy and a clustering metric. The results suggest that filtering procedures based on clustering are more effective than simple random sampling for identifying failures in populations of operational executions, with adaptive sampling from clusters being the most effective sampling strategy. The results also suggest that clustering metrics that give extra weight to industrial profile features are most effective. Scatter plots of execution populations, produced by multidimensional scaling, are used to provide intuition for these results. |
doi_str_mv | 10.1109/ICSE.2001.919107 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_919107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>919107</ieee_id><sourcerecordid>26734007</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b5d44c33de5c95999f7f107cbf062923aff49dd82ff75c0dba109ed5122beb8a3</originalsourceid><addsrcrecordid>eNotUD1PwzAUtPiQKKU7YvLElvJs59UxG6paqFSJAZgjx35GRm4CcSLRf0-kcsstp_ti7FbAUggwD7v122YpAcTSCCNAn7GZQKwKISWes2vQK4MCEPQFm4HUUKBEfcUWOX_BhBJFJdWMPW5j62P7yYONaewp8-bIXRrzQD23rU3HHDPvAqdfcuMQu5Z_912IifINuww2ZVr885x9bDfv65di__q8Wz_tiyhBDUWDviydUp7QGTTGBB2mvq4JsJJGKhtCabyvZAgaHfjGTvPI4zSkoaayas7uT75T8M9IeagPMTtKybbUjbmWK61KAD0J707CSET1dx8Ptj_Wp3vUH6wbVxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26734007</pqid></control><display><type>conference_proceeding</type><title>Finding failures by cluster analysis of execution profiles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dickinson, W. ; Leon, D. ; Fodgurski, A.</creator><creatorcontrib>Dickinson, W. ; Leon, D. ; Fodgurski, A.</creatorcontrib><description>We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering procedure involves a choice of a sampling strategy and a clustering metric. The results suggest that filtering procedures based on clustering are more effective than simple random sampling for identifying failures in populations of operational executions, with adaptive sampling from clusters being the most effective sampling strategy. The results also suggest that clustering metrics that give extra weight to industrial profile features are most effective. Scatter plots of execution populations, produced by multidimensional scaling, are used to provide intuition for these results.</description><identifier>ISSN: 0270-5257</identifier><identifier>ISBN: 0769510507</identifier><identifier>ISBN: 9780769510507</identifier><identifier>EISSN: 1558-1225</identifier><identifier>DOI: 10.1109/ICSE.2001.919107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic testing ; Computer science ; Failure analysis ; Filtering ; Instruments ; Multidimensional systems ; Personnel ; Sampling methods ; Scattering ; Software testing</subject><ispartof>Proceedings / International Conference on Software Engineering, 2001, p.339-348</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/919107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/919107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dickinson, W.</creatorcontrib><creatorcontrib>Leon, D.</creatorcontrib><creatorcontrib>Fodgurski, A.</creatorcontrib><title>Finding failures by cluster analysis of execution profiles</title><title>Proceedings / International Conference on Software Engineering</title><addtitle>ICSE</addtitle><description>We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering procedure involves a choice of a sampling strategy and a clustering metric. The results suggest that filtering procedures based on clustering are more effective than simple random sampling for identifying failures in populations of operational executions, with adaptive sampling from clusters being the most effective sampling strategy. The results also suggest that clustering metrics that give extra weight to industrial profile features are most effective. Scatter plots of execution populations, produced by multidimensional scaling, are used to provide intuition for these results.</description><subject>Automatic testing</subject><subject>Computer science</subject><subject>Failure analysis</subject><subject>Filtering</subject><subject>Instruments</subject><subject>Multidimensional systems</subject><subject>Personnel</subject><subject>Sampling methods</subject><subject>Scattering</subject><subject>Software testing</subject><issn>0270-5257</issn><issn>1558-1225</issn><isbn>0769510507</isbn><isbn>9780769510507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUD1PwzAUtPiQKKU7YvLElvJs59UxG6paqFSJAZgjx35GRm4CcSLRf0-kcsstp_ti7FbAUggwD7v122YpAcTSCCNAn7GZQKwKISWes2vQK4MCEPQFm4HUUKBEfcUWOX_BhBJFJdWMPW5j62P7yYONaewp8-bIXRrzQD23rU3HHDPvAqdfcuMQu5Z_912IifINuww2ZVr885x9bDfv65di__q8Wz_tiyhBDUWDviydUp7QGTTGBB2mvq4JsJJGKhtCabyvZAgaHfjGTvPI4zSkoaayas7uT75T8M9IeagPMTtKybbUjbmWK61KAD0J707CSET1dx8Ptj_Wp3vUH6wbVxE</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Dickinson, W.</creator><creator>Leon, D.</creator><creator>Fodgurski, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>Finding failures by cluster analysis of execution profiles</title><author>Dickinson, W. ; Leon, D. ; Fodgurski, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b5d44c33de5c95999f7f107cbf062923aff49dd82ff75c0dba109ed5122beb8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Automatic testing</topic><topic>Computer science</topic><topic>Failure analysis</topic><topic>Filtering</topic><topic>Instruments</topic><topic>Multidimensional systems</topic><topic>Personnel</topic><topic>Sampling methods</topic><topic>Scattering</topic><topic>Software testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dickinson, W.</creatorcontrib><creatorcontrib>Leon, D.</creatorcontrib><creatorcontrib>Fodgurski, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dickinson, W.</au><au>Leon, D.</au><au>Fodgurski, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finding failures by cluster analysis of execution profiles</atitle><btitle>Proceedings / International Conference on Software Engineering</btitle><stitle>ICSE</stitle><date>2001</date><risdate>2001</risdate><spage>339</spage><epage>348</epage><pages>339-348</pages><issn>0270-5257</issn><eissn>1558-1225</eissn><isbn>0769510507</isbn><isbn>9780769510507</isbn><abstract>We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering procedure involves a choice of a sampling strategy and a clustering metric. The results suggest that filtering procedures based on clustering are more effective than simple random sampling for identifying failures in populations of operational executions, with adaptive sampling from clusters being the most effective sampling strategy. The results also suggest that clustering metrics that give extra weight to industrial profile features are most effective. Scatter plots of execution populations, produced by multidimensional scaling, are used to provide intuition for these results.</abstract><pub>IEEE</pub><doi>10.1109/ICSE.2001.919107</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0270-5257 |
ispartof | Proceedings / International Conference on Software Engineering, 2001, p.339-348 |
issn | 0270-5257 1558-1225 |
language | eng |
recordid | cdi_ieee_primary_919107 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic testing Computer science Failure analysis Filtering Instruments Multidimensional systems Personnel Sampling methods Scattering Software testing |
title | Finding failures by cluster analysis of execution profiles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finding%20failures%20by%20cluster%20analysis%20of%20execution%20profiles&rft.btitle=Proceedings%20/%20International%20Conference%20on%20Software%20Engineering&rft.au=Dickinson,%20W.&rft.date=2001&rft.spage=339&rft.epage=348&rft.pages=339-348&rft.issn=0270-5257&rft.eissn=1558-1225&rft.isbn=0769510507&rft.isbn_list=9780769510507&rft_id=info:doi/10.1109/ICSE.2001.919107&rft_dat=%3Cproquest_6IE%3E26734007%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26734007&rft_id=info:pmid/&rft_ieee_id=919107&rfr_iscdi=true |