Finding failures by cluster analysis of execution profiles

We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dickinson, W., Leon, D., Fodgurski, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue
container_start_page 339
container_title
container_volume
creator Dickinson, W.
Leon, D.
Fodgurski, A.
description We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering procedure involves a choice of a sampling strategy and a clustering metric. The results suggest that filtering procedures based on clustering are more effective than simple random sampling for identifying failures in populations of operational executions, with adaptive sampling from clusters being the most effective sampling strategy. The results also suggest that clustering metrics that give extra weight to industrial profile features are most effective. Scatter plots of execution populations, produced by multidimensional scaling, are used to provide intuition for these results.
doi_str_mv 10.1109/ICSE.2001.919107
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_919107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>919107</ieee_id><sourcerecordid>26734007</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b5d44c33de5c95999f7f107cbf062923aff49dd82ff75c0dba109ed5122beb8a3</originalsourceid><addsrcrecordid>eNotUD1PwzAUtPiQKKU7YvLElvJs59UxG6paqFSJAZgjx35GRm4CcSLRf0-kcsstp_ti7FbAUggwD7v122YpAcTSCCNAn7GZQKwKISWes2vQK4MCEPQFm4HUUKBEfcUWOX_BhBJFJdWMPW5j62P7yYONaewp8-bIXRrzQD23rU3HHDPvAqdfcuMQu5Z_912IifINuww2ZVr885x9bDfv65di__q8Wz_tiyhBDUWDviydUp7QGTTGBB2mvq4JsJJGKhtCabyvZAgaHfjGTvPI4zSkoaayas7uT75T8M9IeagPMTtKybbUjbmWK61KAD0J707CSET1dx8Ptj_Wp3vUH6wbVxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26734007</pqid></control><display><type>conference_proceeding</type><title>Finding failures by cluster analysis of execution profiles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dickinson, W. ; Leon, D. ; Fodgurski, A.</creator><creatorcontrib>Dickinson, W. ; Leon, D. ; Fodgurski, A.</creatorcontrib><description>We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering procedure involves a choice of a sampling strategy and a clustering metric. The results suggest that filtering procedures based on clustering are more effective than simple random sampling for identifying failures in populations of operational executions, with adaptive sampling from clusters being the most effective sampling strategy. The results also suggest that clustering metrics that give extra weight to industrial profile features are most effective. Scatter plots of execution populations, produced by multidimensional scaling, are used to provide intuition for these results.</description><identifier>ISSN: 0270-5257</identifier><identifier>ISBN: 0769510507</identifier><identifier>ISBN: 9780769510507</identifier><identifier>EISSN: 1558-1225</identifier><identifier>DOI: 10.1109/ICSE.2001.919107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic testing ; Computer science ; Failure analysis ; Filtering ; Instruments ; Multidimensional systems ; Personnel ; Sampling methods ; Scattering ; Software testing</subject><ispartof>Proceedings / International Conference on Software Engineering, 2001, p.339-348</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/919107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/919107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dickinson, W.</creatorcontrib><creatorcontrib>Leon, D.</creatorcontrib><creatorcontrib>Fodgurski, A.</creatorcontrib><title>Finding failures by cluster analysis of execution profiles</title><title>Proceedings / International Conference on Software Engineering</title><addtitle>ICSE</addtitle><description>We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering procedure involves a choice of a sampling strategy and a clustering metric. The results suggest that filtering procedures based on clustering are more effective than simple random sampling for identifying failures in populations of operational executions, with adaptive sampling from clusters being the most effective sampling strategy. The results also suggest that clustering metrics that give extra weight to industrial profile features are most effective. Scatter plots of execution populations, produced by multidimensional scaling, are used to provide intuition for these results.</description><subject>Automatic testing</subject><subject>Computer science</subject><subject>Failure analysis</subject><subject>Filtering</subject><subject>Instruments</subject><subject>Multidimensional systems</subject><subject>Personnel</subject><subject>Sampling methods</subject><subject>Scattering</subject><subject>Software testing</subject><issn>0270-5257</issn><issn>1558-1225</issn><isbn>0769510507</isbn><isbn>9780769510507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUD1PwzAUtPiQKKU7YvLElvJs59UxG6paqFSJAZgjx35GRm4CcSLRf0-kcsstp_ti7FbAUggwD7v122YpAcTSCCNAn7GZQKwKISWes2vQK4MCEPQFm4HUUKBEfcUWOX_BhBJFJdWMPW5j62P7yYONaewp8-bIXRrzQD23rU3HHDPvAqdfcuMQu5Z_912IifINuww2ZVr885x9bDfv65di__q8Wz_tiyhBDUWDviydUp7QGTTGBB2mvq4JsJJGKhtCabyvZAgaHfjGTvPI4zSkoaayas7uT75T8M9IeagPMTtKybbUjbmWK61KAD0J707CSET1dx8Ptj_Wp3vUH6wbVxE</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Dickinson, W.</creator><creator>Leon, D.</creator><creator>Fodgurski, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>Finding failures by cluster analysis of execution profiles</title><author>Dickinson, W. ; Leon, D. ; Fodgurski, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b5d44c33de5c95999f7f107cbf062923aff49dd82ff75c0dba109ed5122beb8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Automatic testing</topic><topic>Computer science</topic><topic>Failure analysis</topic><topic>Filtering</topic><topic>Instruments</topic><topic>Multidimensional systems</topic><topic>Personnel</topic><topic>Sampling methods</topic><topic>Scattering</topic><topic>Software testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dickinson, W.</creatorcontrib><creatorcontrib>Leon, D.</creatorcontrib><creatorcontrib>Fodgurski, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dickinson, W.</au><au>Leon, D.</au><au>Fodgurski, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finding failures by cluster analysis of execution profiles</atitle><btitle>Proceedings / International Conference on Software Engineering</btitle><stitle>ICSE</stitle><date>2001</date><risdate>2001</risdate><spage>339</spage><epage>348</epage><pages>339-348</pages><issn>0270-5257</issn><eissn>1558-1225</eissn><isbn>0769510507</isbn><isbn>9780769510507</isbn><abstract>We experimentally evaluate the effectiveness of using cluster analysis of execution profiles to find failures among the executions induced by a set of potential test cases. We compare several filtering procedures for selecting executions to evaluate for conformance to requirements. Each filtering procedure involves a choice of a sampling strategy and a clustering metric. The results suggest that filtering procedures based on clustering are more effective than simple random sampling for identifying failures in populations of operational executions, with adaptive sampling from clusters being the most effective sampling strategy. The results also suggest that clustering metrics that give extra weight to industrial profile features are most effective. Scatter plots of execution populations, produced by multidimensional scaling, are used to provide intuition for these results.</abstract><pub>IEEE</pub><doi>10.1109/ICSE.2001.919107</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0270-5257
ispartof Proceedings / International Conference on Software Engineering, 2001, p.339-348
issn 0270-5257
1558-1225
language eng
recordid cdi_ieee_primary_919107
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic testing
Computer science
Failure analysis
Filtering
Instruments
Multidimensional systems
Personnel
Sampling methods
Scattering
Software testing
title Finding failures by cluster analysis of execution profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finding%20failures%20by%20cluster%20analysis%20of%20execution%20profiles&rft.btitle=Proceedings%20/%20International%20Conference%20on%20Software%20Engineering&rft.au=Dickinson,%20W.&rft.date=2001&rft.spage=339&rft.epage=348&rft.pages=339-348&rft.issn=0270-5257&rft.eissn=1558-1225&rft.isbn=0769510507&rft.isbn_list=9780769510507&rft_id=info:doi/10.1109/ICSE.2001.919107&rft_dat=%3Cproquest_6IE%3E26734007%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26734007&rft_id=info:pmid/&rft_ieee_id=919107&rfr_iscdi=true