Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach
A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on pari...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2020-12, Vol.66 (12), p.7465-7474 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7474 |
---|---|
container_issue | 12 |
container_start_page | 7465 |
container_title | IEEE transactions on information theory |
container_volume | 66 |
creator | Hao, Jie Xia, Shu-Tao Shum, Kenneth W. Chen, Bin Fu, Fang-Wei Yang, Yixian |
description | A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on parity-check matrix to analyze the bounds of LRCs is proposed, and several new explicit bounds on the minimum distance of LRCs in terms of the field size are presented. In particular, we give an alternate proof of the Singleton-like bound for LRCs first proved by Gopalan et al. Some structural properties on optimal LRCs that achieve the Singleton-like bound are given. Then, we focus on constructions of optimal LRCs over the binary field. It is proved that there are only five classes of possible parameters with which optimal binary LRCs exist. Moreover, by employing the proposed parity-check matrix approach, we completely enumerate all these five classes of optimal binary LRCs attaining the Singleton-like bound in the sense of equivalence of linear codes. |
doi_str_mv | 10.1109/TIT.2020.3021707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9186658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186658</ieee_id><sourcerecordid>2465436613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-5c21591e12461e76f49b7b9ebf2759dbf4c81c6a0367227b7768d995b24b072a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrztz0nw03unwYzBRxrwOSZqyztrWpAX3783Y8OqcA8_7HngQugYyAyDqbr1YzyihZJYTCpLIEzQBzmWmBGenaEIIFJlirDhHFzFu08k40AlaPXZjW0Zs2hLPuzYOYXRDnRbcVXjZOdM0O7zyvamDsY1PTOnjPf4woR522Xzj3Rd-M0Oof_FD34fOuM0lOqtME_3VcU7R5_PTev6aLd9fFvOHZeZyLoeMOwpcgQfKBHgpKqastMrbikquSlsxV4AThuRCUiqtlKIoleKWMkskNfkU3R5609uf0cdBb7sxtOmlTpWc5UJAnihyoFzoYgy-0n2ov03YaSB6b04nc3pvTh_NpcjNIVJ77_9xBYUQvMj_AHaBaH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436613</pqid></control><display><type>article</type><title>Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Hao, Jie ; Xia, Shu-Tao ; Shum, Kenneth W. ; Chen, Bin ; Fu, Fang-Wei ; Yang, Yixian</creator><creatorcontrib>Hao, Jie ; Xia, Shu-Tao ; Shum, Kenneth W. ; Chen, Bin ; Fu, Fang-Wei ; Yang, Yixian</creatorcontrib><description>A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on parity-check matrix to analyze the bounds of LRCs is proposed, and several new explicit bounds on the minimum distance of LRCs in terms of the field size are presented. In particular, we give an alternate proof of the Singleton-like bound for LRCs first proved by Gopalan et al. Some structural properties on optimal LRCs that achieve the Singleton-like bound are given. Then, we focus on constructions of optimal LRCs over the binary field. It is proved that there are only five classes of possible parameters with which optimal binary LRCs exist. Moreover, by employing the proposed parity-check matrix approach, we completely enumerate all these five classes of optimal binary LRCs attaining the Singleton-like bound in the sense of equivalence of linear codes.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3021707</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>binary LRCs ; Binary system ; Codes ; Distributed databases ; Electronic mail ; Linear codes ; Locally repairable codes ; Maintenance engineering ; Mathematical analysis ; Matrix methods ; optimal LRCs ; Parity ; parity-check matrices ; Reed-Solomon codes ; Reliability ; Singleton-like bound ; Upper bound ; upper bounds</subject><ispartof>IEEE transactions on information theory, 2020-12, Vol.66 (12), p.7465-7474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-5c21591e12461e76f49b7b9ebf2759dbf4c81c6a0367227b7768d995b24b072a3</citedby><cites>FETCH-LOGICAL-c357t-5c21591e12461e76f49b7b9ebf2759dbf4c81c6a0367227b7768d995b24b072a3</cites><orcidid>0000-0002-4798-230X ; 0000-0001-8067-4774 ; 0000-0003-2032-665X ; 0000-0001-6505-6177 ; 0000-0002-8639-982X ; 0000-0002-9696-8977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9186658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao, Jie</creatorcontrib><creatorcontrib>Xia, Shu-Tao</creatorcontrib><creatorcontrib>Shum, Kenneth W.</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Fu, Fang-Wei</creatorcontrib><creatorcontrib>Yang, Yixian</creatorcontrib><title>Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on parity-check matrix to analyze the bounds of LRCs is proposed, and several new explicit bounds on the minimum distance of LRCs in terms of the field size are presented. In particular, we give an alternate proof of the Singleton-like bound for LRCs first proved by Gopalan et al. Some structural properties on optimal LRCs that achieve the Singleton-like bound are given. Then, we focus on constructions of optimal LRCs over the binary field. It is proved that there are only five classes of possible parameters with which optimal binary LRCs exist. Moreover, by employing the proposed parity-check matrix approach, we completely enumerate all these five classes of optimal binary LRCs attaining the Singleton-like bound in the sense of equivalence of linear codes.</description><subject>binary LRCs</subject><subject>Binary system</subject><subject>Codes</subject><subject>Distributed databases</subject><subject>Electronic mail</subject><subject>Linear codes</subject><subject>Locally repairable codes</subject><subject>Maintenance engineering</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>optimal LRCs</subject><subject>Parity</subject><subject>parity-check matrices</subject><subject>Reed-Solomon codes</subject><subject>Reliability</subject><subject>Singleton-like bound</subject><subject>Upper bound</subject><subject>upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrztz0nw03unwYzBRxrwOSZqyztrWpAX3783Y8OqcA8_7HngQugYyAyDqbr1YzyihZJYTCpLIEzQBzmWmBGenaEIIFJlirDhHFzFu08k40AlaPXZjW0Zs2hLPuzYOYXRDnRbcVXjZOdM0O7zyvamDsY1PTOnjPf4woR522Xzj3Rd-M0Oof_FD34fOuM0lOqtME_3VcU7R5_PTev6aLd9fFvOHZeZyLoeMOwpcgQfKBHgpKqastMrbikquSlsxV4AThuRCUiqtlKIoleKWMkskNfkU3R5609uf0cdBb7sxtOmlTpWc5UJAnihyoFzoYgy-0n2ov03YaSB6b04nc3pvTh_NpcjNIVJ77_9xBYUQvMj_AHaBaH8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hao, Jie</creator><creator>Xia, Shu-Tao</creator><creator>Shum, Kenneth W.</creator><creator>Chen, Bin</creator><creator>Fu, Fang-Wei</creator><creator>Yang, Yixian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4798-230X</orcidid><orcidid>https://orcid.org/0000-0001-8067-4774</orcidid><orcidid>https://orcid.org/0000-0003-2032-665X</orcidid><orcidid>https://orcid.org/0000-0001-6505-6177</orcidid><orcidid>https://orcid.org/0000-0002-8639-982X</orcidid><orcidid>https://orcid.org/0000-0002-9696-8977</orcidid></search><sort><creationdate>20201201</creationdate><title>Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach</title><author>Hao, Jie ; Xia, Shu-Tao ; Shum, Kenneth W. ; Chen, Bin ; Fu, Fang-Wei ; Yang, Yixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-5c21591e12461e76f49b7b9ebf2759dbf4c81c6a0367227b7768d995b24b072a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>binary LRCs</topic><topic>Binary system</topic><topic>Codes</topic><topic>Distributed databases</topic><topic>Electronic mail</topic><topic>Linear codes</topic><topic>Locally repairable codes</topic><topic>Maintenance engineering</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>optimal LRCs</topic><topic>Parity</topic><topic>parity-check matrices</topic><topic>Reed-Solomon codes</topic><topic>Reliability</topic><topic>Singleton-like bound</topic><topic>Upper bound</topic><topic>upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Jie</creatorcontrib><creatorcontrib>Xia, Shu-Tao</creatorcontrib><creatorcontrib>Shum, Kenneth W.</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Fu, Fang-Wei</creatorcontrib><creatorcontrib>Yang, Yixian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao, Jie</au><au>Xia, Shu-Tao</au><au>Shum, Kenneth W.</au><au>Chen, Bin</au><au>Fu, Fang-Wei</au><au>Yang, Yixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>66</volume><issue>12</issue><spage>7465</spage><epage>7474</epage><pages>7465-7474</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on parity-check matrix to analyze the bounds of LRCs is proposed, and several new explicit bounds on the minimum distance of LRCs in terms of the field size are presented. In particular, we give an alternate proof of the Singleton-like bound for LRCs first proved by Gopalan et al. Some structural properties on optimal LRCs that achieve the Singleton-like bound are given. Then, we focus on constructions of optimal LRCs over the binary field. It is proved that there are only five classes of possible parameters with which optimal binary LRCs exist. Moreover, by employing the proposed parity-check matrix approach, we completely enumerate all these five classes of optimal binary LRCs attaining the Singleton-like bound in the sense of equivalence of linear codes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3021707</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4798-230X</orcidid><orcidid>https://orcid.org/0000-0001-8067-4774</orcidid><orcidid>https://orcid.org/0000-0003-2032-665X</orcidid><orcidid>https://orcid.org/0000-0001-6505-6177</orcidid><orcidid>https://orcid.org/0000-0002-8639-982X</orcidid><orcidid>https://orcid.org/0000-0002-9696-8977</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2020-12, Vol.66 (12), p.7465-7474 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_9186658 |
source | IEEE Electronic Library (IEL) |
subjects | binary LRCs Binary system Codes Distributed databases Electronic mail Linear codes Locally repairable codes Maintenance engineering Mathematical analysis Matrix methods optimal LRCs Parity parity-check matrices Reed-Solomon codes Reliability Singleton-like bound Upper bound upper bounds |
title | Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20and%20Constructions%20of%20Locally%20Repairable%20Codes:%20Parity-Check%20Matrix%20Approach&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Hao,%20Jie&rft.date=2020-12-01&rft.volume=66&rft.issue=12&rft.spage=7465&rft.epage=7474&rft.pages=7465-7474&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3021707&rft_dat=%3Cproquest_RIE%3E2465436613%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465436613&rft_id=info:pmid/&rft_ieee_id=9186658&rfr_iscdi=true |