Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach

A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on pari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-12, Vol.66 (12), p.7465-7474
Hauptverfasser: Hao, Jie, Xia, Shu-Tao, Shum, Kenneth W., Chen, Bin, Fu, Fang-Wei, Yang, Yixian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7474
container_issue 12
container_start_page 7465
container_title IEEE transactions on information theory
container_volume 66
creator Hao, Jie
Xia, Shu-Tao
Shum, Kenneth W.
Chen, Bin
Fu, Fang-Wei
Yang, Yixian
description A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on parity-check matrix to analyze the bounds of LRCs is proposed, and several new explicit bounds on the minimum distance of LRCs in terms of the field size are presented. In particular, we give an alternate proof of the Singleton-like bound for LRCs first proved by Gopalan et al. Some structural properties on optimal LRCs that achieve the Singleton-like bound are given. Then, we focus on constructions of optimal LRCs over the binary field. It is proved that there are only five classes of possible parameters with which optimal binary LRCs exist. Moreover, by employing the proposed parity-check matrix approach, we completely enumerate all these five classes of optimal binary LRCs attaining the Singleton-like bound in the sense of equivalence of linear codes.
doi_str_mv 10.1109/TIT.2020.3021707
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9186658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186658</ieee_id><sourcerecordid>2465436613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-5c21591e12461e76f49b7b9ebf2759dbf4c81c6a0367227b7768d995b24b072a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrztz0nw03unwYzBRxrwOSZqyztrWpAX3783Y8OqcA8_7HngQugYyAyDqbr1YzyihZJYTCpLIEzQBzmWmBGenaEIIFJlirDhHFzFu08k40AlaPXZjW0Zs2hLPuzYOYXRDnRbcVXjZOdM0O7zyvamDsY1PTOnjPf4woR522Xzj3Rd-M0Oof_FD34fOuM0lOqtME_3VcU7R5_PTev6aLd9fFvOHZeZyLoeMOwpcgQfKBHgpKqastMrbikquSlsxV4AThuRCUiqtlKIoleKWMkskNfkU3R5609uf0cdBb7sxtOmlTpWc5UJAnihyoFzoYgy-0n2ov03YaSB6b04nc3pvTh_NpcjNIVJ77_9xBYUQvMj_AHaBaH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465436613</pqid></control><display><type>article</type><title>Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Hao, Jie ; Xia, Shu-Tao ; Shum, Kenneth W. ; Chen, Bin ; Fu, Fang-Wei ; Yang, Yixian</creator><creatorcontrib>Hao, Jie ; Xia, Shu-Tao ; Shum, Kenneth W. ; Chen, Bin ; Fu, Fang-Wei ; Yang, Yixian</creatorcontrib><description>A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on parity-check matrix to analyze the bounds of LRCs is proposed, and several new explicit bounds on the minimum distance of LRCs in terms of the field size are presented. In particular, we give an alternate proof of the Singleton-like bound for LRCs first proved by Gopalan et al. Some structural properties on optimal LRCs that achieve the Singleton-like bound are given. Then, we focus on constructions of optimal LRCs over the binary field. It is proved that there are only five classes of possible parameters with which optimal binary LRCs exist. Moreover, by employing the proposed parity-check matrix approach, we completely enumerate all these five classes of optimal binary LRCs attaining the Singleton-like bound in the sense of equivalence of linear codes.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3021707</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>binary LRCs ; Binary system ; Codes ; Distributed databases ; Electronic mail ; Linear codes ; Locally repairable codes ; Maintenance engineering ; Mathematical analysis ; Matrix methods ; optimal LRCs ; Parity ; parity-check matrices ; Reed-Solomon codes ; Reliability ; Singleton-like bound ; Upper bound ; upper bounds</subject><ispartof>IEEE transactions on information theory, 2020-12, Vol.66 (12), p.7465-7474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-5c21591e12461e76f49b7b9ebf2759dbf4c81c6a0367227b7768d995b24b072a3</citedby><cites>FETCH-LOGICAL-c357t-5c21591e12461e76f49b7b9ebf2759dbf4c81c6a0367227b7768d995b24b072a3</cites><orcidid>0000-0002-4798-230X ; 0000-0001-8067-4774 ; 0000-0003-2032-665X ; 0000-0001-6505-6177 ; 0000-0002-8639-982X ; 0000-0002-9696-8977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9186658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao, Jie</creatorcontrib><creatorcontrib>Xia, Shu-Tao</creatorcontrib><creatorcontrib>Shum, Kenneth W.</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Fu, Fang-Wei</creatorcontrib><creatorcontrib>Yang, Yixian</creatorcontrib><title>Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on parity-check matrix to analyze the bounds of LRCs is proposed, and several new explicit bounds on the minimum distance of LRCs in terms of the field size are presented. In particular, we give an alternate proof of the Singleton-like bound for LRCs first proved by Gopalan et al. Some structural properties on optimal LRCs that achieve the Singleton-like bound are given. Then, we focus on constructions of optimal LRCs over the binary field. It is proved that there are only five classes of possible parameters with which optimal binary LRCs exist. Moreover, by employing the proposed parity-check matrix approach, we completely enumerate all these five classes of optimal binary LRCs attaining the Singleton-like bound in the sense of equivalence of linear codes.</description><subject>binary LRCs</subject><subject>Binary system</subject><subject>Codes</subject><subject>Distributed databases</subject><subject>Electronic mail</subject><subject>Linear codes</subject><subject>Locally repairable codes</subject><subject>Maintenance engineering</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>optimal LRCs</subject><subject>Parity</subject><subject>parity-check matrices</subject><subject>Reed-Solomon codes</subject><subject>Reliability</subject><subject>Singleton-like bound</subject><subject>Upper bound</subject><subject>upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrztz0nw03unwYzBRxrwOSZqyztrWpAX3783Y8OqcA8_7HngQugYyAyDqbr1YzyihZJYTCpLIEzQBzmWmBGenaEIIFJlirDhHFzFu08k40AlaPXZjW0Zs2hLPuzYOYXRDnRbcVXjZOdM0O7zyvamDsY1PTOnjPf4woR522Xzj3Rd-M0Oof_FD34fOuM0lOqtME_3VcU7R5_PTev6aLd9fFvOHZeZyLoeMOwpcgQfKBHgpKqastMrbikquSlsxV4AThuRCUiqtlKIoleKWMkskNfkU3R5609uf0cdBb7sxtOmlTpWc5UJAnihyoFzoYgy-0n2ov03YaSB6b04nc3pvTh_NpcjNIVJ77_9xBYUQvMj_AHaBaH8</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hao, Jie</creator><creator>Xia, Shu-Tao</creator><creator>Shum, Kenneth W.</creator><creator>Chen, Bin</creator><creator>Fu, Fang-Wei</creator><creator>Yang, Yixian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4798-230X</orcidid><orcidid>https://orcid.org/0000-0001-8067-4774</orcidid><orcidid>https://orcid.org/0000-0003-2032-665X</orcidid><orcidid>https://orcid.org/0000-0001-6505-6177</orcidid><orcidid>https://orcid.org/0000-0002-8639-982X</orcidid><orcidid>https://orcid.org/0000-0002-9696-8977</orcidid></search><sort><creationdate>20201201</creationdate><title>Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach</title><author>Hao, Jie ; Xia, Shu-Tao ; Shum, Kenneth W. ; Chen, Bin ; Fu, Fang-Wei ; Yang, Yixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-5c21591e12461e76f49b7b9ebf2759dbf4c81c6a0367227b7768d995b24b072a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>binary LRCs</topic><topic>Binary system</topic><topic>Codes</topic><topic>Distributed databases</topic><topic>Electronic mail</topic><topic>Linear codes</topic><topic>Locally repairable codes</topic><topic>Maintenance engineering</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>optimal LRCs</topic><topic>Parity</topic><topic>parity-check matrices</topic><topic>Reed-Solomon codes</topic><topic>Reliability</topic><topic>Singleton-like bound</topic><topic>Upper bound</topic><topic>upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Jie</creatorcontrib><creatorcontrib>Xia, Shu-Tao</creatorcontrib><creatorcontrib>Shum, Kenneth W.</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Fu, Fang-Wei</creatorcontrib><creatorcontrib>Yang, Yixian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao, Jie</au><au>Xia, Shu-Tao</au><au>Shum, Kenneth W.</au><au>Chen, Bin</au><au>Fu, Fang-Wei</au><au>Yang, Yixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>66</volume><issue>12</issue><spage>7465</spage><epage>7474</epage><pages>7465-7474</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A locally repairable code (LRC) is a linear code such that every code symbol can be recovered by accessing a small number of other code symbols. In this paper, we study bounds and constructions of LRCs from the viewpoint of parity-check matrices. Firstly, a simple and unified framework based on parity-check matrix to analyze the bounds of LRCs is proposed, and several new explicit bounds on the minimum distance of LRCs in terms of the field size are presented. In particular, we give an alternate proof of the Singleton-like bound for LRCs first proved by Gopalan et al. Some structural properties on optimal LRCs that achieve the Singleton-like bound are given. Then, we focus on constructions of optimal LRCs over the binary field. It is proved that there are only five classes of possible parameters with which optimal binary LRCs exist. Moreover, by employing the proposed parity-check matrix approach, we completely enumerate all these five classes of optimal binary LRCs attaining the Singleton-like bound in the sense of equivalence of linear codes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3021707</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4798-230X</orcidid><orcidid>https://orcid.org/0000-0001-8067-4774</orcidid><orcidid>https://orcid.org/0000-0003-2032-665X</orcidid><orcidid>https://orcid.org/0000-0001-6505-6177</orcidid><orcidid>https://orcid.org/0000-0002-8639-982X</orcidid><orcidid>https://orcid.org/0000-0002-9696-8977</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-12, Vol.66 (12), p.7465-7474
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9186658
source IEEE Electronic Library (IEL)
subjects binary LRCs
Binary system
Codes
Distributed databases
Electronic mail
Linear codes
Locally repairable codes
Maintenance engineering
Mathematical analysis
Matrix methods
optimal LRCs
Parity
parity-check matrices
Reed-Solomon codes
Reliability
Singleton-like bound
Upper bound
upper bounds
title Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20and%20Constructions%20of%20Locally%20Repairable%20Codes:%20Parity-Check%20Matrix%20Approach&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Hao,%20Jie&rft.date=2020-12-01&rft.volume=66&rft.issue=12&rft.spage=7465&rft.epage=7474&rft.pages=7465-7474&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3021707&rft_dat=%3Cproquest_RIE%3E2465436613%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465436613&rft_id=info:pmid/&rft_ieee_id=9186658&rfr_iscdi=true