Learning-Based URLLC-Aware Task Offloading for Internet of Health Things

In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2021-02, Vol.39 (2), p.396-410
Hauptverfasser: Zhou, Zhenyu, Wang, Zhao, Yu, Haijun, Liao, Haijun, Mumtaz, Shahid, Oliveira, Luis, Frascolla, Valerio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 2
container_start_page 396
container_title IEEE journal on selected areas in communications
container_volume 39
creator Zhou, Zhenyu
Wang, Zhao
Yu, Haijun
Liao, Haijun
Mumtaz, Shahid
Oliveira, Luis
Frascolla, Valerio
description In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (GSI), the adversarial competition among multiple IoHT devices, and the ultra reliable and low latency communication (URLLC) constraints have imposed new challenges for task offloading optimization. In this article, we formulate the task offloading problem as an adversarial multi-armed bandit (MAB) problem. In addition to the average-based performance metrics, bound violation probability, occurrence probability of extreme events, and statistical properties of excess values are employed to characterize URLLC constraints. Then, we propose a URLLC-aware Task Offloading scheme based on the exponential-weight algorithm for exploration and exploitation (EXP3) named UTO-EXP3. URLLC awareness is achieved by dynamically balancing the URLLC constraint deficits and energy consumption through online learning. We provide a rigorous theoretical analysis to show that guaranteed performance with a bounded deviation can be achieved by UTO-EXP3 based on only local information. Finally, the effectiveness and reliability of UTO-EXP3 are validated through simulation results.
doi_str_mv 10.1109/JSAC.2020.3020680
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9186655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186655</ieee_id><sourcerecordid>2478835576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-82ccc20becb26c5e6854f83c859010ccd74fd5cac47c8d897b3d1943332d61933</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPKdOvrPHuqitLBS0PYc0m9jWuluTLeK_d0uLl3kP87wz8CB0S2FEKRQPr-_jcsSAwYj3Qxk4QwMqpSEAYM7RADTnxGiqLtFVzhsAKoRhAzSpgkvNuvkgjy6HGi_eqqok4x-XAp67_IlnMW5bV_cEjm3C06YLqQkdbiOeBLftVni-6pf5Gl1Et83h5pRDtHh-mpcTUs1epuW4Il6A7ohh3nsGy-CXTHkZlJEiGu6NLICC97UWsZbeeaG9qU2hl7ymheCcs1rRgvMhuj_e3aX2ex9yZzftPjX9S8uENoZLqVVP0SPlU5tzCtHu0vrLpV9LwR6E2YMwexBmT8L6zt2xsw4h_PMFNUpJyf8Av1Nk8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478835576</pqid></control><display><type>article</type><title>Learning-Based URLLC-Aware Task Offloading for Internet of Health Things</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Zhenyu ; Wang, Zhao ; Yu, Haijun ; Liao, Haijun ; Mumtaz, Shahid ; Oliveira, Luis ; Frascolla, Valerio</creator><creatorcontrib>Zhou, Zhenyu ; Wang, Zhao ; Yu, Haijun ; Liao, Haijun ; Mumtaz, Shahid ; Oliveira, Luis ; Frascolla, Valerio</creatorcontrib><description>In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (GSI), the adversarial competition among multiple IoHT devices, and the ultra reliable and low latency communication (URLLC) constraints have imposed new challenges for task offloading optimization. In this article, we formulate the task offloading problem as an adversarial multi-armed bandit (MAB) problem. In addition to the average-based performance metrics, bound violation probability, occurrence probability of extreme events, and statistical properties of excess values are employed to characterize URLLC constraints. Then, we propose a URLLC-aware Task Offloading scheme based on the exponential-weight algorithm for exploration and exploitation (EXP3) named UTO-EXP3. URLLC awareness is achieved by dynamically balancing the URLLC constraint deficits and energy consumption through online learning. We provide a rigorous theoretical analysis to show that guaranteed performance with a bounded deviation can be achieved by UTO-EXP3 based on only local information. Finally, the effectiveness and reliability of UTO-EXP3 are validated through simulation results.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2020.3020680</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adversarial multi-armed bandit ; Algorithms ; Computation offloading ; Delays ; Edge computing ; Energy consumption ; EXP3 ; Extreme values ; Internet ; Internet of Health Things ; Machine learning ; Multi-armed bandit problems ; Network latency ; Optimization ; Performance measurement ; Probability ; Reliability ; Servers ; Statistical analysis ; Task analysis ; task offloading ; URLLC</subject><ispartof>IEEE journal on selected areas in communications, 2021-02, Vol.39 (2), p.396-410</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-82ccc20becb26c5e6854f83c859010ccd74fd5cac47c8d897b3d1943332d61933</citedby><cites>FETCH-LOGICAL-c407t-82ccc20becb26c5e6854f83c859010ccd74fd5cac47c8d897b3d1943332d61933</cites><orcidid>0000-0002-5936-9246 ; 0000-0002-4256-2955 ; 0000-0001-9412-5012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9186655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Yu, Haijun</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Mumtaz, Shahid</creatorcontrib><creatorcontrib>Oliveira, Luis</creatorcontrib><creatorcontrib>Frascolla, Valerio</creatorcontrib><title>Learning-Based URLLC-Aware Task Offloading for Internet of Health Things</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (GSI), the adversarial competition among multiple IoHT devices, and the ultra reliable and low latency communication (URLLC) constraints have imposed new challenges for task offloading optimization. In this article, we formulate the task offloading problem as an adversarial multi-armed bandit (MAB) problem. In addition to the average-based performance metrics, bound violation probability, occurrence probability of extreme events, and statistical properties of excess values are employed to characterize URLLC constraints. Then, we propose a URLLC-aware Task Offloading scheme based on the exponential-weight algorithm for exploration and exploitation (EXP3) named UTO-EXP3. URLLC awareness is achieved by dynamically balancing the URLLC constraint deficits and energy consumption through online learning. We provide a rigorous theoretical analysis to show that guaranteed performance with a bounded deviation can be achieved by UTO-EXP3 based on only local information. Finally, the effectiveness and reliability of UTO-EXP3 are validated through simulation results.</description><subject>adversarial multi-armed bandit</subject><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>EXP3</subject><subject>Extreme values</subject><subject>Internet</subject><subject>Internet of Health Things</subject><subject>Machine learning</subject><subject>Multi-armed bandit problems</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Probability</subject><subject>Reliability</subject><subject>Servers</subject><subject>Statistical analysis</subject><subject>Task analysis</subject><subject>task offloading</subject><subject>URLLC</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPKdOvrPHuqitLBS0PYc0m9jWuluTLeK_d0uLl3kP87wz8CB0S2FEKRQPr-_jcsSAwYj3Qxk4QwMqpSEAYM7RADTnxGiqLtFVzhsAKoRhAzSpgkvNuvkgjy6HGi_eqqok4x-XAp67_IlnMW5bV_cEjm3C06YLqQkdbiOeBLftVni-6pf5Gl1Et83h5pRDtHh-mpcTUs1epuW4Il6A7ohh3nsGy-CXTHkZlJEiGu6NLICC97UWsZbeeaG9qU2hl7ymheCcs1rRgvMhuj_e3aX2ex9yZzftPjX9S8uENoZLqVVP0SPlU5tzCtHu0vrLpV9LwR6E2YMwexBmT8L6zt2xsw4h_PMFNUpJyf8Av1Nk8w</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhou, Zhenyu</creator><creator>Wang, Zhao</creator><creator>Yu, Haijun</creator><creator>Liao, Haijun</creator><creator>Mumtaz, Shahid</creator><creator>Oliveira, Luis</creator><creator>Frascolla, Valerio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5936-9246</orcidid><orcidid>https://orcid.org/0000-0002-4256-2955</orcidid><orcidid>https://orcid.org/0000-0001-9412-5012</orcidid></search><sort><creationdate>20210201</creationdate><title>Learning-Based URLLC-Aware Task Offloading for Internet of Health Things</title><author>Zhou, Zhenyu ; Wang, Zhao ; Yu, Haijun ; Liao, Haijun ; Mumtaz, Shahid ; Oliveira, Luis ; Frascolla, Valerio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-82ccc20becb26c5e6854f83c859010ccd74fd5cac47c8d897b3d1943332d61933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adversarial multi-armed bandit</topic><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>EXP3</topic><topic>Extreme values</topic><topic>Internet</topic><topic>Internet of Health Things</topic><topic>Machine learning</topic><topic>Multi-armed bandit problems</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Probability</topic><topic>Reliability</topic><topic>Servers</topic><topic>Statistical analysis</topic><topic>Task analysis</topic><topic>task offloading</topic><topic>URLLC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Yu, Haijun</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Mumtaz, Shahid</creatorcontrib><creatorcontrib>Oliveira, Luis</creatorcontrib><creatorcontrib>Frascolla, Valerio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Zhenyu</au><au>Wang, Zhao</au><au>Yu, Haijun</au><au>Liao, Haijun</au><au>Mumtaz, Shahid</au><au>Oliveira, Luis</au><au>Frascolla, Valerio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning-Based URLLC-Aware Task Offloading for Internet of Health Things</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>39</volume><issue>2</issue><spage>396</spage><epage>410</epage><pages>396-410</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (GSI), the adversarial competition among multiple IoHT devices, and the ultra reliable and low latency communication (URLLC) constraints have imposed new challenges for task offloading optimization. In this article, we formulate the task offloading problem as an adversarial multi-armed bandit (MAB) problem. In addition to the average-based performance metrics, bound violation probability, occurrence probability of extreme events, and statistical properties of excess values are employed to characterize URLLC constraints. Then, we propose a URLLC-aware Task Offloading scheme based on the exponential-weight algorithm for exploration and exploitation (EXP3) named UTO-EXP3. URLLC awareness is achieved by dynamically balancing the URLLC constraint deficits and energy consumption through online learning. We provide a rigorous theoretical analysis to show that guaranteed performance with a bounded deviation can be achieved by UTO-EXP3 based on only local information. Finally, the effectiveness and reliability of UTO-EXP3 are validated through simulation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2020.3020680</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5936-9246</orcidid><orcidid>https://orcid.org/0000-0002-4256-2955</orcidid><orcidid>https://orcid.org/0000-0001-9412-5012</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2021-02, Vol.39 (2), p.396-410
issn 0733-8716
1558-0008
language eng
recordid cdi_ieee_primary_9186655
source IEEE Electronic Library (IEL)
subjects adversarial multi-armed bandit
Algorithms
Computation offloading
Delays
Edge computing
Energy consumption
EXP3
Extreme values
Internet
Internet of Health Things
Machine learning
Multi-armed bandit problems
Network latency
Optimization
Performance measurement
Probability
Reliability
Servers
Statistical analysis
Task analysis
task offloading
URLLC
title Learning-Based URLLC-Aware Task Offloading for Internet of Health Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning-Based%20URLLC-Aware%20Task%20Offloading%20for%20Internet%20of%20Health%20Things&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Zhou,%20Zhenyu&rft.date=2021-02-01&rft.volume=39&rft.issue=2&rft.spage=396&rft.epage=410&rft.pages=396-410&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2020.3020680&rft_dat=%3Cproquest_RIE%3E2478835576%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478835576&rft_id=info:pmid/&rft_ieee_id=9186655&rfr_iscdi=true