Learning-Based URLLC-Aware Task Offloading for Internet of Health Things
In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (G...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2021-02, Vol.39 (2), p.396-410 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | 2 |
container_start_page | 396 |
container_title | IEEE journal on selected areas in communications |
container_volume | 39 |
creator | Zhou, Zhenyu Wang, Zhao Yu, Haijun Liao, Haijun Mumtaz, Shahid Oliveira, Luis Frascolla, Valerio |
description | In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (GSI), the adversarial competition among multiple IoHT devices, and the ultra reliable and low latency communication (URLLC) constraints have imposed new challenges for task offloading optimization. In this article, we formulate the task offloading problem as an adversarial multi-armed bandit (MAB) problem. In addition to the average-based performance metrics, bound violation probability, occurrence probability of extreme events, and statistical properties of excess values are employed to characterize URLLC constraints. Then, we propose a URLLC-aware Task Offloading scheme based on the exponential-weight algorithm for exploration and exploitation (EXP3) named UTO-EXP3. URLLC awareness is achieved by dynamically balancing the URLLC constraint deficits and energy consumption through online learning. We provide a rigorous theoretical analysis to show that guaranteed performance with a bounded deviation can be achieved by UTO-EXP3 based on only local information. Finally, the effectiveness and reliability of UTO-EXP3 are validated through simulation results. |
doi_str_mv | 10.1109/JSAC.2020.3020680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9186655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186655</ieee_id><sourcerecordid>2478835576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-82ccc20becb26c5e6854f83c859010ccd74fd5cac47c8d897b3d1943332d61933</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPKdOvrPHuqitLBS0PYc0m9jWuluTLeK_d0uLl3kP87wz8CB0S2FEKRQPr-_jcsSAwYj3Qxk4QwMqpSEAYM7RADTnxGiqLtFVzhsAKoRhAzSpgkvNuvkgjy6HGi_eqqok4x-XAp67_IlnMW5bV_cEjm3C06YLqQkdbiOeBLftVni-6pf5Gl1Et83h5pRDtHh-mpcTUs1epuW4Il6A7ohh3nsGy-CXTHkZlJEiGu6NLICC97UWsZbeeaG9qU2hl7ymheCcs1rRgvMhuj_e3aX2ex9yZzftPjX9S8uENoZLqVVP0SPlU5tzCtHu0vrLpV9LwR6E2YMwexBmT8L6zt2xsw4h_PMFNUpJyf8Av1Nk8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478835576</pqid></control><display><type>article</type><title>Learning-Based URLLC-Aware Task Offloading for Internet of Health Things</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Zhenyu ; Wang, Zhao ; Yu, Haijun ; Liao, Haijun ; Mumtaz, Shahid ; Oliveira, Luis ; Frascolla, Valerio</creator><creatorcontrib>Zhou, Zhenyu ; Wang, Zhao ; Yu, Haijun ; Liao, Haijun ; Mumtaz, Shahid ; Oliveira, Luis ; Frascolla, Valerio</creatorcontrib><description>In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (GSI), the adversarial competition among multiple IoHT devices, and the ultra reliable and low latency communication (URLLC) constraints have imposed new challenges for task offloading optimization. In this article, we formulate the task offloading problem as an adversarial multi-armed bandit (MAB) problem. In addition to the average-based performance metrics, bound violation probability, occurrence probability of extreme events, and statistical properties of excess values are employed to characterize URLLC constraints. Then, we propose a URLLC-aware Task Offloading scheme based on the exponential-weight algorithm for exploration and exploitation (EXP3) named UTO-EXP3. URLLC awareness is achieved by dynamically balancing the URLLC constraint deficits and energy consumption through online learning. We provide a rigorous theoretical analysis to show that guaranteed performance with a bounded deviation can be achieved by UTO-EXP3 based on only local information. Finally, the effectiveness and reliability of UTO-EXP3 are validated through simulation results.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2020.3020680</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adversarial multi-armed bandit ; Algorithms ; Computation offloading ; Delays ; Edge computing ; Energy consumption ; EXP3 ; Extreme values ; Internet ; Internet of Health Things ; Machine learning ; Multi-armed bandit problems ; Network latency ; Optimization ; Performance measurement ; Probability ; Reliability ; Servers ; Statistical analysis ; Task analysis ; task offloading ; URLLC</subject><ispartof>IEEE journal on selected areas in communications, 2021-02, Vol.39 (2), p.396-410</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-82ccc20becb26c5e6854f83c859010ccd74fd5cac47c8d897b3d1943332d61933</citedby><cites>FETCH-LOGICAL-c407t-82ccc20becb26c5e6854f83c859010ccd74fd5cac47c8d897b3d1943332d61933</cites><orcidid>0000-0002-5936-9246 ; 0000-0002-4256-2955 ; 0000-0001-9412-5012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186655$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9186655$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Yu, Haijun</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Mumtaz, Shahid</creatorcontrib><creatorcontrib>Oliveira, Luis</creatorcontrib><creatorcontrib>Frascolla, Valerio</creatorcontrib><title>Learning-Based URLLC-Aware Task Offloading for Internet of Health Things</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (GSI), the adversarial competition among multiple IoHT devices, and the ultra reliable and low latency communication (URLLC) constraints have imposed new challenges for task offloading optimization. In this article, we formulate the task offloading problem as an adversarial multi-armed bandit (MAB) problem. In addition to the average-based performance metrics, bound violation probability, occurrence probability of extreme events, and statistical properties of excess values are employed to characterize URLLC constraints. Then, we propose a URLLC-aware Task Offloading scheme based on the exponential-weight algorithm for exploration and exploitation (EXP3) named UTO-EXP3. URLLC awareness is achieved by dynamically balancing the URLLC constraint deficits and energy consumption through online learning. We provide a rigorous theoretical analysis to show that guaranteed performance with a bounded deviation can be achieved by UTO-EXP3 based on only local information. Finally, the effectiveness and reliability of UTO-EXP3 are validated through simulation results.</description><subject>adversarial multi-armed bandit</subject><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>EXP3</subject><subject>Extreme values</subject><subject>Internet</subject><subject>Internet of Health Things</subject><subject>Machine learning</subject><subject>Multi-armed bandit problems</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Probability</subject><subject>Reliability</subject><subject>Servers</subject><subject>Statistical analysis</subject><subject>Task analysis</subject><subject>task offloading</subject><subject>URLLC</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPKdOvrPHuqitLBS0PYc0m9jWuluTLeK_d0uLl3kP87wz8CB0S2FEKRQPr-_jcsSAwYj3Qxk4QwMqpSEAYM7RADTnxGiqLtFVzhsAKoRhAzSpgkvNuvkgjy6HGi_eqqok4x-XAp67_IlnMW5bV_cEjm3C06YLqQkdbiOeBLftVni-6pf5Gl1Et83h5pRDtHh-mpcTUs1epuW4Il6A7ohh3nsGy-CXTHkZlJEiGu6NLICC97UWsZbeeaG9qU2hl7ymheCcs1rRgvMhuj_e3aX2ex9yZzftPjX9S8uENoZLqVVP0SPlU5tzCtHu0vrLpV9LwR6E2YMwexBmT8L6zt2xsw4h_PMFNUpJyf8Av1Nk8w</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhou, Zhenyu</creator><creator>Wang, Zhao</creator><creator>Yu, Haijun</creator><creator>Liao, Haijun</creator><creator>Mumtaz, Shahid</creator><creator>Oliveira, Luis</creator><creator>Frascolla, Valerio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5936-9246</orcidid><orcidid>https://orcid.org/0000-0002-4256-2955</orcidid><orcidid>https://orcid.org/0000-0001-9412-5012</orcidid></search><sort><creationdate>20210201</creationdate><title>Learning-Based URLLC-Aware Task Offloading for Internet of Health Things</title><author>Zhou, Zhenyu ; Wang, Zhao ; Yu, Haijun ; Liao, Haijun ; Mumtaz, Shahid ; Oliveira, Luis ; Frascolla, Valerio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-82ccc20becb26c5e6854f83c859010ccd74fd5cac47c8d897b3d1943332d61933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adversarial multi-armed bandit</topic><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>EXP3</topic><topic>Extreme values</topic><topic>Internet</topic><topic>Internet of Health Things</topic><topic>Machine learning</topic><topic>Multi-armed bandit problems</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Probability</topic><topic>Reliability</topic><topic>Servers</topic><topic>Statistical analysis</topic><topic>Task analysis</topic><topic>task offloading</topic><topic>URLLC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Yu, Haijun</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Mumtaz, Shahid</creatorcontrib><creatorcontrib>Oliveira, Luis</creatorcontrib><creatorcontrib>Frascolla, Valerio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Zhenyu</au><au>Wang, Zhao</au><au>Yu, Haijun</au><au>Liao, Haijun</au><au>Mumtaz, Shahid</au><au>Oliveira, Luis</au><au>Frascolla, Valerio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning-Based URLLC-Aware Task Offloading for Internet of Health Things</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>39</volume><issue>2</issue><spage>396</spage><epage>410</epage><pages>396-410</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>In the Internet of Health Things (IoHT)-based e-Health paradigm, a large number of computational-intensive tasks have to be offloaded from resource-limited IoHT devices to proximal powerful edge servers to reduce latency and improve energy efficiency. However, the lack of global state information (GSI), the adversarial competition among multiple IoHT devices, and the ultra reliable and low latency communication (URLLC) constraints have imposed new challenges for task offloading optimization. In this article, we formulate the task offloading problem as an adversarial multi-armed bandit (MAB) problem. In addition to the average-based performance metrics, bound violation probability, occurrence probability of extreme events, and statistical properties of excess values are employed to characterize URLLC constraints. Then, we propose a URLLC-aware Task Offloading scheme based on the exponential-weight algorithm for exploration and exploitation (EXP3) named UTO-EXP3. URLLC awareness is achieved by dynamically balancing the URLLC constraint deficits and energy consumption through online learning. We provide a rigorous theoretical analysis to show that guaranteed performance with a bounded deviation can be achieved by UTO-EXP3 based on only local information. Finally, the effectiveness and reliability of UTO-EXP3 are validated through simulation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2020.3020680</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5936-9246</orcidid><orcidid>https://orcid.org/0000-0002-4256-2955</orcidid><orcidid>https://orcid.org/0000-0001-9412-5012</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2021-02, Vol.39 (2), p.396-410 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_ieee_primary_9186655 |
source | IEEE Electronic Library (IEL) |
subjects | adversarial multi-armed bandit Algorithms Computation offloading Delays Edge computing Energy consumption EXP3 Extreme values Internet Internet of Health Things Machine learning Multi-armed bandit problems Network latency Optimization Performance measurement Probability Reliability Servers Statistical analysis Task analysis task offloading URLLC |
title | Learning-Based URLLC-Aware Task Offloading for Internet of Health Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning-Based%20URLLC-Aware%20Task%20Offloading%20for%20Internet%20of%20Health%20Things&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Zhou,%20Zhenyu&rft.date=2021-02-01&rft.volume=39&rft.issue=2&rft.spage=396&rft.epage=410&rft.pages=396-410&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2020.3020680&rft_dat=%3Cproquest_RIE%3E2478835576%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478835576&rft_id=info:pmid/&rft_ieee_id=9186655&rfr_iscdi=true |