Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers

Proton Exchange Membrane Fuel Cells (PEMFC) is considered a propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and an in-depth understanding of all its operating characteristics attracted the interest of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.166998-167018
Hauptverfasser: Diab, Ahmed A. Zaki, Tolba, Mohamed A., El-Magd, Ayat Gamal Abo, Zaky, Magdy M., El-Rifaie, Ali M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167018
container_issue
container_start_page 166998
container_title IEEE access
container_volume 8
creator Diab, Ahmed A. Zaki
Tolba, Mohamed A.
El-Magd, Ayat Gamal Abo
Zaky, Magdy M.
El-Rifaie, Ali M.
description Proton Exchange Membrane Fuel Cells (PEMFC) is considered a propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and an in-depth understanding of all its operating characteristics attracted the interest of many researchers. In this paper, recent meta-heuristic optimization methods have been successfully applied to evaluate the unknown parameters of PEMFC models, particularly Marine Predators Algorithm (MPA) and Political Optimizer (PO) techniques. The proposed optimization algorithms have been tested on three different commercial PEMFC stacks, namely BCS 500-W, SR-12PEM 500 W, and 250 W stack under various operating conditions. The sum of square errors (SSE) between the results obtained by the application of the estimated parameters and the experimentally measured results of the fuel cell stacks was considered as the objective function of the optimization problem. In order to validate the effectiveness of the proposed methods, the results are compared with those obtained in the literature. Moreover, the I/V curves obtained by the application of MPA and PO showed a clear matching with datasheet curves for all the studied cases. Statistical analysis has been performed to evaluate the robustness of the MPA and PO techniques. Finally, the PEMFC model based on the MPA technique surpasses all compared algorithms in terms of the solution accuracy and the convergence speed. The obtained results confirmed the superiority and reliability of the applied approach of the MPA algorithm. The results prove that the MPA algorithm has a superior performance based on its reliability.
doi_str_mv 10.1109/ACCESS.2020.3021754
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9186606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186606</ieee_id><doaj_id>oai_doaj_org_article_0b8a66437442413ea10e799c4084470c</doaj_id><sourcerecordid>2454678259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-d87909691cf3be1367c28a5406ffdc5f82fe44724c71b1b1aa1b545610a05c423</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaKgaH9BLwHPrfv9cZRQtVCxUD0vk81EtsRu3aSC_nq3RsSdww4z77158IpiSsmcUmJvbqtqsdnMGWFkzgmjWoqT4oJRZWdccnX6rz8vJn2_JfmZPJL6oni8O2BXVth15RoSvOGAqS8X_RDeYAhxV34EKB8hhR2W64QNDDHvYdeU69iFIXjoyqd9RoevTLwqzlroepz8_pfFy93iuXqYrZ7ul9XtauaFNMOsMdoSqyz1La-RcqU9MyAFUW3beNka1qIQmgmvaZ0LgNZSSEUJEOkF45fFctRtImzdPmWz6dNFCO5nENOrg5TNdehIbUApwbUQTFCOQAlqa70gJp8gPmtdj1r7FN8P2A9uGw9pl-07JqRQ2jBpM4qPKJ9i3yds_65S4o4xuDEGd4zB_caQWdORFRDxj2GpUYoo_g1-BoFL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454678259</pqid></control><display><type>article</type><title>Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Diab, Ahmed A. Zaki ; Tolba, Mohamed A. ; El-Magd, Ayat Gamal Abo ; Zaky, Magdy M. ; El-Rifaie, Ali M.</creator><creatorcontrib>Diab, Ahmed A. Zaki ; Tolba, Mohamed A. ; El-Magd, Ayat Gamal Abo ; Zaky, Magdy M. ; El-Rifaie, Ali M.</creatorcontrib><description>Proton Exchange Membrane Fuel Cells (PEMFC) is considered a propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and an in-depth understanding of all its operating characteristics attracted the interest of many researchers. In this paper, recent meta-heuristic optimization methods have been successfully applied to evaluate the unknown parameters of PEMFC models, particularly Marine Predators Algorithm (MPA) and Political Optimizer (PO) techniques. The proposed optimization algorithms have been tested on three different commercial PEMFC stacks, namely BCS 500-W, SR-12PEM 500 W, and 250 W stack under various operating conditions. The sum of square errors (SSE) between the results obtained by the application of the estimated parameters and the experimentally measured results of the fuel cell stacks was considered as the objective function of the optimization problem. In order to validate the effectiveness of the proposed methods, the results are compared with those obtained in the literature. Moreover, the I/V curves obtained by the application of MPA and PO showed a clear matching with datasheet curves for all the studied cases. Statistical analysis has been performed to evaluate the robustness of the MPA and PO techniques. Finally, the PEMFC model based on the MPA technique surpasses all compared algorithms in terms of the solution accuracy and the convergence speed. The obtained results confirmed the superiority and reliability of the applied approach of the MPA algorithm. The results prove that the MPA algorithm has a superior performance based on its reliability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3021754</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cathodes ; Convergence ; Fuel cell modeling ; Fuel cells ; Heuristic methods ; Hydrogen ; Mathematical models ; metaheuristic algorithms ; Optimization ; Parameter estimation ; Predators ; Proton exchange membrane fuel cells ; Reliability ; Stacks ; Statistical analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.166998-167018</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-d87909691cf3be1367c28a5406ffdc5f82fe44724c71b1b1aa1b545610a05c423</citedby><cites>FETCH-LOGICAL-c458t-d87909691cf3be1367c28a5406ffdc5f82fe44724c71b1b1aa1b545610a05c423</cites><orcidid>0000-0002-8598-9983 ; 0000-0003-3685-6962 ; 0000-0003-1220-0053 ; 0000-0002-1424-0182 ; 0000-0002-3085-0853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9186606$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Diab, Ahmed A. Zaki</creatorcontrib><creatorcontrib>Tolba, Mohamed A.</creatorcontrib><creatorcontrib>El-Magd, Ayat Gamal Abo</creatorcontrib><creatorcontrib>Zaky, Magdy M.</creatorcontrib><creatorcontrib>El-Rifaie, Ali M.</creatorcontrib><title>Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers</title><title>IEEE access</title><addtitle>Access</addtitle><description>Proton Exchange Membrane Fuel Cells (PEMFC) is considered a propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and an in-depth understanding of all its operating characteristics attracted the interest of many researchers. In this paper, recent meta-heuristic optimization methods have been successfully applied to evaluate the unknown parameters of PEMFC models, particularly Marine Predators Algorithm (MPA) and Political Optimizer (PO) techniques. The proposed optimization algorithms have been tested on three different commercial PEMFC stacks, namely BCS 500-W, SR-12PEM 500 W, and 250 W stack under various operating conditions. The sum of square errors (SSE) between the results obtained by the application of the estimated parameters and the experimentally measured results of the fuel cell stacks was considered as the objective function of the optimization problem. In order to validate the effectiveness of the proposed methods, the results are compared with those obtained in the literature. Moreover, the I/V curves obtained by the application of MPA and PO showed a clear matching with datasheet curves for all the studied cases. Statistical analysis has been performed to evaluate the robustness of the MPA and PO techniques. Finally, the PEMFC model based on the MPA technique surpasses all compared algorithms in terms of the solution accuracy and the convergence speed. The obtained results confirmed the superiority and reliability of the applied approach of the MPA algorithm. The results prove that the MPA algorithm has a superior performance based on its reliability.</description><subject>Algorithms</subject><subject>Cathodes</subject><subject>Convergence</subject><subject>Fuel cell modeling</subject><subject>Fuel cells</subject><subject>Heuristic methods</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>metaheuristic algorithms</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Predators</subject><subject>Proton exchange membrane fuel cells</subject><subject>Reliability</subject><subject>Stacks</subject><subject>Statistical analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaKgaH9BLwHPrfv9cZRQtVCxUD0vk81EtsRu3aSC_nq3RsSdww4z77158IpiSsmcUmJvbqtqsdnMGWFkzgmjWoqT4oJRZWdccnX6rz8vJn2_JfmZPJL6oni8O2BXVth15RoSvOGAqS8X_RDeYAhxV34EKB8hhR2W64QNDDHvYdeU69iFIXjoyqd9RoevTLwqzlroepz8_pfFy93iuXqYrZ7ul9XtauaFNMOsMdoSqyz1La-RcqU9MyAFUW3beNka1qIQmgmvaZ0LgNZSSEUJEOkF45fFctRtImzdPmWz6dNFCO5nENOrg5TNdehIbUApwbUQTFCOQAlqa70gJp8gPmtdj1r7FN8P2A9uGw9pl-07JqRQ2jBpM4qPKJ9i3yds_65S4o4xuDEGd4zB_caQWdORFRDxj2GpUYoo_g1-BoFL</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Diab, Ahmed A. Zaki</creator><creator>Tolba, Mohamed A.</creator><creator>El-Magd, Ayat Gamal Abo</creator><creator>Zaky, Magdy M.</creator><creator>El-Rifaie, Ali M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8598-9983</orcidid><orcidid>https://orcid.org/0000-0003-3685-6962</orcidid><orcidid>https://orcid.org/0000-0003-1220-0053</orcidid><orcidid>https://orcid.org/0000-0002-1424-0182</orcidid><orcidid>https://orcid.org/0000-0002-3085-0853</orcidid></search><sort><creationdate>2020</creationdate><title>Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers</title><author>Diab, Ahmed A. Zaki ; Tolba, Mohamed A. ; El-Magd, Ayat Gamal Abo ; Zaky, Magdy M. ; El-Rifaie, Ali M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-d87909691cf3be1367c28a5406ffdc5f82fe44724c71b1b1aa1b545610a05c423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cathodes</topic><topic>Convergence</topic><topic>Fuel cell modeling</topic><topic>Fuel cells</topic><topic>Heuristic methods</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>metaheuristic algorithms</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Predators</topic><topic>Proton exchange membrane fuel cells</topic><topic>Reliability</topic><topic>Stacks</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diab, Ahmed A. Zaki</creatorcontrib><creatorcontrib>Tolba, Mohamed A.</creatorcontrib><creatorcontrib>El-Magd, Ayat Gamal Abo</creatorcontrib><creatorcontrib>Zaky, Magdy M.</creatorcontrib><creatorcontrib>El-Rifaie, Ali M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diab, Ahmed A. Zaki</au><au>Tolba, Mohamed A.</au><au>El-Magd, Ayat Gamal Abo</au><au>Zaky, Magdy M.</au><au>El-Rifaie, Ali M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>166998</spage><epage>167018</epage><pages>166998-167018</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Proton Exchange Membrane Fuel Cells (PEMFC) is considered a propitious solution for an environmentally friendly energy source. A precise model of PEMFC for accurate identification of its polarization curve and an in-depth understanding of all its operating characteristics attracted the interest of many researchers. In this paper, recent meta-heuristic optimization methods have been successfully applied to evaluate the unknown parameters of PEMFC models, particularly Marine Predators Algorithm (MPA) and Political Optimizer (PO) techniques. The proposed optimization algorithms have been tested on three different commercial PEMFC stacks, namely BCS 500-W, SR-12PEM 500 W, and 250 W stack under various operating conditions. The sum of square errors (SSE) between the results obtained by the application of the estimated parameters and the experimentally measured results of the fuel cell stacks was considered as the objective function of the optimization problem. In order to validate the effectiveness of the proposed methods, the results are compared with those obtained in the literature. Moreover, the I/V curves obtained by the application of MPA and PO showed a clear matching with datasheet curves for all the studied cases. Statistical analysis has been performed to evaluate the robustness of the MPA and PO techniques. Finally, the PEMFC model based on the MPA technique surpasses all compared algorithms in terms of the solution accuracy and the convergence speed. The obtained results confirmed the superiority and reliability of the applied approach of the MPA algorithm. The results prove that the MPA algorithm has a superior performance based on its reliability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3021754</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8598-9983</orcidid><orcidid>https://orcid.org/0000-0003-3685-6962</orcidid><orcidid>https://orcid.org/0000-0003-1220-0053</orcidid><orcidid>https://orcid.org/0000-0002-1424-0182</orcidid><orcidid>https://orcid.org/0000-0002-3085-0853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.166998-167018
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9186606
source DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals
subjects Algorithms
Cathodes
Convergence
Fuel cell modeling
Fuel cells
Heuristic methods
Hydrogen
Mathematical models
metaheuristic algorithms
Optimization
Parameter estimation
Predators
Proton exchange membrane fuel cells
Reliability
Stacks
Statistical analysis
title Fuel Cell Parameters Estimation via Marine Predators and Political Optimizers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%20Cell%20Parameters%20Estimation%20via%20Marine%20Predators%20and%20Political%20Optimizers&rft.jtitle=IEEE%20access&rft.au=Diab,%20Ahmed%20A.%20Zaki&rft.date=2020&rft.volume=8&rft.spage=166998&rft.epage=167018&rft.pages=166998-167018&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3021754&rft_dat=%3Cproquest_ieee_%3E2454678259%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454678259&rft_id=info:pmid/&rft_ieee_id=9186606&rft_doaj_id=oai_doaj_org_article_0b8a66437442413ea10e799c4084470c&rfr_iscdi=true