Simulation-based Evolutionary Optimization of Air Traffic Management

In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Manage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Pellegrini, Alessandro, Di Sanzo, Pierangelo, Bevilacqua, Beatrice, Duca, Gabriella, Pascarella, Domenico, Palumbo, Roberto, Ramos, Juan Jose, Piera, Miquel Angel, Gigante, Gabriella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Pellegrini, Alessandro
Di Sanzo, Pierangelo
Bevilacqua, Beatrice
Duca, Gabriella
Pascarella, Domenico
Palumbo, Roberto
Ramos, Juan Jose
Piera, Miquel Angel
Gigante, Gabriella
description In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involvement of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective.
doi_str_mv 10.1109/ACCESS.2020.3021192
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9184863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9184863</ieee_id><doaj_id>oai_doaj_org_article_3f5acabe40484ca7bce5e3274bd37b0c</doaj_id><sourcerecordid>2454677458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a8632b42d65b12f5d863cd25e7155265e432e357802c96a6cf197d87371d1d9a3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKVf0Eskzil-OzlWoUCloh5azpZjO5WrJC5OggRfj9ugir3sc2Z3B4A5gguEYP60LIrVbrfAEMMFgRihHN-ACUY8Twkj_PZffA9mXXeE0bJYYmICnneuGWrVO9-mpeqsSVZfvh7OuQrfyfbUu8b9XPqJr5KlC8k-qKpyOnlXrTrYxrb9A7irVN3Z2Z-fgo-X1b54Szfb13Wx3KSaCtqnKuMElxQbzkqEK2Zirg1mViDGMGeWEmwJExnEOueK6wrlwmSCCGSQyRWZgvXIa7w6ylNwTbxReuXkpeDDQarQO11bSSqmtCothTSjWolSW2YJFrQ0RJRQR67HkesU_Odgu14e_RDaeL7ElFEuBGVZnCLjlA6-64KtrlsRlGf15ai-PKsv_9SPqPmIctbaKyJHGY0fk1868n-J</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454677458</pqid></control><display><type>article</type><title>Simulation-based Evolutionary Optimization of Air Traffic Management</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pellegrini, Alessandro ; Di Sanzo, Pierangelo ; Bevilacqua, Beatrice ; Duca, Gabriella ; Pascarella, Domenico ; Palumbo, Roberto ; Ramos, Juan Jose ; Piera, Miquel Angel ; Gigante, Gabriella</creator><creatorcontrib>Pellegrini, Alessandro ; Di Sanzo, Pierangelo ; Bevilacqua, Beatrice ; Duca, Gabriella ; Pascarella, Domenico ; Palumbo, Roberto ; Ramos, Juan Jose ; Piera, Miquel Angel ; Gigante, Gabriella</creatorcontrib><description>In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involvement of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3021192</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace engineering ; Air Traffic Control ; Air traffic management ; Aircraft control ; Analytical models ; Artificial intelligence ; Atmospheric modeling ; Complexity theory ; Computational modeling ; Computer architecture ; Context ; Decision analysis ; Design optimization ; Distributed Optimization ; Evolutionary Algorithms ; Measurement ; Modeling and Simulation ; Multi-Objective Optimization ; Multiple objective analysis ; Optimization ; Performance measurement ; Simulation ; Support to Strategic Design ; Traffic information</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a8632b42d65b12f5d863cd25e7155265e432e357802c96a6cf197d87371d1d9a3</citedby><cites>FETCH-LOGICAL-c474t-a8632b42d65b12f5d863cd25e7155265e432e357802c96a6cf197d87371d1d9a3</cites><orcidid>0000-0003-1332-4234 ; 0000-0001-6136-6303 ; 0000-0002-7227-7944 ; 0000-0003-1569-1812 ; 0000-0002-0179-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9184863$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Pellegrini, Alessandro</creatorcontrib><creatorcontrib>Di Sanzo, Pierangelo</creatorcontrib><creatorcontrib>Bevilacqua, Beatrice</creatorcontrib><creatorcontrib>Duca, Gabriella</creatorcontrib><creatorcontrib>Pascarella, Domenico</creatorcontrib><creatorcontrib>Palumbo, Roberto</creatorcontrib><creatorcontrib>Ramos, Juan Jose</creatorcontrib><creatorcontrib>Piera, Miquel Angel</creatorcontrib><creatorcontrib>Gigante, Gabriella</creatorcontrib><title>Simulation-based Evolutionary Optimization of Air Traffic Management</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involvement of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective.</description><subject>Aerospace engineering</subject><subject>Air Traffic Control</subject><subject>Air traffic management</subject><subject>Aircraft control</subject><subject>Analytical models</subject><subject>Artificial intelligence</subject><subject>Atmospheric modeling</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Context</subject><subject>Decision analysis</subject><subject>Design optimization</subject><subject>Distributed Optimization</subject><subject>Evolutionary Algorithms</subject><subject>Measurement</subject><subject>Modeling and Simulation</subject><subject>Multi-Objective Optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Simulation</subject><subject>Support to Strategic Design</subject><subject>Traffic information</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKVf0Eskzil-OzlWoUCloh5azpZjO5WrJC5OggRfj9ugir3sc2Z3B4A5gguEYP60LIrVbrfAEMMFgRihHN-ACUY8Twkj_PZffA9mXXeE0bJYYmICnneuGWrVO9-mpeqsSVZfvh7OuQrfyfbUu8b9XPqJr5KlC8k-qKpyOnlXrTrYxrb9A7irVN3Z2Z-fgo-X1b54Szfb13Wx3KSaCtqnKuMElxQbzkqEK2Zirg1mViDGMGeWEmwJExnEOueK6wrlwmSCCGSQyRWZgvXIa7w6ylNwTbxReuXkpeDDQarQO11bSSqmtCothTSjWolSW2YJFrQ0RJRQR67HkesU_Odgu14e_RDaeL7ElFEuBGVZnCLjlA6-64KtrlsRlGf15ai-PKsv_9SPqPmIctbaKyJHGY0fk1868n-J</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Pellegrini, Alessandro</creator><creator>Di Sanzo, Pierangelo</creator><creator>Bevilacqua, Beatrice</creator><creator>Duca, Gabriella</creator><creator>Pascarella, Domenico</creator><creator>Palumbo, Roberto</creator><creator>Ramos, Juan Jose</creator><creator>Piera, Miquel Angel</creator><creator>Gigante, Gabriella</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1332-4234</orcidid><orcidid>https://orcid.org/0000-0001-6136-6303</orcidid><orcidid>https://orcid.org/0000-0002-7227-7944</orcidid><orcidid>https://orcid.org/0000-0003-1569-1812</orcidid><orcidid>https://orcid.org/0000-0002-0179-9868</orcidid></search><sort><creationdate>20200101</creationdate><title>Simulation-based Evolutionary Optimization of Air Traffic Management</title><author>Pellegrini, Alessandro ; Di Sanzo, Pierangelo ; Bevilacqua, Beatrice ; Duca, Gabriella ; Pascarella, Domenico ; Palumbo, Roberto ; Ramos, Juan Jose ; Piera, Miquel Angel ; Gigante, Gabriella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a8632b42d65b12f5d863cd25e7155265e432e357802c96a6cf197d87371d1d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace engineering</topic><topic>Air Traffic Control</topic><topic>Air traffic management</topic><topic>Aircraft control</topic><topic>Analytical models</topic><topic>Artificial intelligence</topic><topic>Atmospheric modeling</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Context</topic><topic>Decision analysis</topic><topic>Design optimization</topic><topic>Distributed Optimization</topic><topic>Evolutionary Algorithms</topic><topic>Measurement</topic><topic>Modeling and Simulation</topic><topic>Multi-Objective Optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Simulation</topic><topic>Support to Strategic Design</topic><topic>Traffic information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pellegrini, Alessandro</creatorcontrib><creatorcontrib>Di Sanzo, Pierangelo</creatorcontrib><creatorcontrib>Bevilacqua, Beatrice</creatorcontrib><creatorcontrib>Duca, Gabriella</creatorcontrib><creatorcontrib>Pascarella, Domenico</creatorcontrib><creatorcontrib>Palumbo, Roberto</creatorcontrib><creatorcontrib>Ramos, Juan Jose</creatorcontrib><creatorcontrib>Piera, Miquel Angel</creatorcontrib><creatorcontrib>Gigante, Gabriella</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pellegrini, Alessandro</au><au>Di Sanzo, Pierangelo</au><au>Bevilacqua, Beatrice</au><au>Duca, Gabriella</au><au>Pascarella, Domenico</au><au>Palumbo, Roberto</au><au>Ramos, Juan Jose</au><au>Piera, Miquel Angel</au><au>Gigante, Gabriella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation-based Evolutionary Optimization of Air Traffic Management</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involvement of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3021192</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1332-4234</orcidid><orcidid>https://orcid.org/0000-0001-6136-6303</orcidid><orcidid>https://orcid.org/0000-0002-7227-7944</orcidid><orcidid>https://orcid.org/0000-0003-1569-1812</orcidid><orcidid>https://orcid.org/0000-0002-0179-9868</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9184863
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Aerospace engineering
Air Traffic Control
Air traffic management
Aircraft control
Analytical models
Artificial intelligence
Atmospheric modeling
Complexity theory
Computational modeling
Computer architecture
Context
Decision analysis
Design optimization
Distributed Optimization
Evolutionary Algorithms
Measurement
Modeling and Simulation
Multi-Objective Optimization
Multiple objective analysis
Optimization
Performance measurement
Simulation
Support to Strategic Design
Traffic information
title Simulation-based Evolutionary Optimization of Air Traffic Management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation-based%20Evolutionary%20Optimization%20of%20Air%20Traffic%20Management&rft.jtitle=IEEE%20access&rft.au=Pellegrini,%20Alessandro&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3021192&rft_dat=%3Cproquest_ieee_%3E2454677458%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454677458&rft_id=info:pmid/&rft_ieee_id=9184863&rft_doaj_id=oai_doaj_org_article_3f5acabe40484ca7bce5e3274bd37b0c&rfr_iscdi=true