Simulation-based Evolutionary Optimization of Air Traffic Management
In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Manage...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Pellegrini, Alessandro Di Sanzo, Pierangelo Bevilacqua, Beatrice Duca, Gabriella Pascarella, Domenico Palumbo, Roberto Ramos, Juan Jose Piera, Miquel Angel Gigante, Gabriella |
description | In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involvement of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective. |
doi_str_mv | 10.1109/ACCESS.2020.3021192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9184863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9184863</ieee_id><doaj_id>oai_doaj_org_article_3f5acabe40484ca7bce5e3274bd37b0c</doaj_id><sourcerecordid>2454677458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a8632b42d65b12f5d863cd25e7155265e432e357802c96a6cf197d87371d1d9a3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKVf0Eskzil-OzlWoUCloh5azpZjO5WrJC5OggRfj9ugir3sc2Z3B4A5gguEYP60LIrVbrfAEMMFgRihHN-ACUY8Twkj_PZffA9mXXeE0bJYYmICnneuGWrVO9-mpeqsSVZfvh7OuQrfyfbUu8b9XPqJr5KlC8k-qKpyOnlXrTrYxrb9A7irVN3Z2Z-fgo-X1b54Szfb13Wx3KSaCtqnKuMElxQbzkqEK2Zirg1mViDGMGeWEmwJExnEOueK6wrlwmSCCGSQyRWZgvXIa7w6ylNwTbxReuXkpeDDQarQO11bSSqmtCothTSjWolSW2YJFrQ0RJRQR67HkesU_Odgu14e_RDaeL7ElFEuBGVZnCLjlA6-64KtrlsRlGf15ai-PKsv_9SPqPmIctbaKyJHGY0fk1868n-J</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454677458</pqid></control><display><type>article</type><title>Simulation-based Evolutionary Optimization of Air Traffic Management</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pellegrini, Alessandro ; Di Sanzo, Pierangelo ; Bevilacqua, Beatrice ; Duca, Gabriella ; Pascarella, Domenico ; Palumbo, Roberto ; Ramos, Juan Jose ; Piera, Miquel Angel ; Gigante, Gabriella</creator><creatorcontrib>Pellegrini, Alessandro ; Di Sanzo, Pierangelo ; Bevilacqua, Beatrice ; Duca, Gabriella ; Pascarella, Domenico ; Palumbo, Roberto ; Ramos, Juan Jose ; Piera, Miquel Angel ; Gigante, Gabriella</creatorcontrib><description>In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involvement of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3021192</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerospace engineering ; Air Traffic Control ; Air traffic management ; Aircraft control ; Analytical models ; Artificial intelligence ; Atmospheric modeling ; Complexity theory ; Computational modeling ; Computer architecture ; Context ; Decision analysis ; Design optimization ; Distributed Optimization ; Evolutionary Algorithms ; Measurement ; Modeling and Simulation ; Multi-Objective Optimization ; Multiple objective analysis ; Optimization ; Performance measurement ; Simulation ; Support to Strategic Design ; Traffic information</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a8632b42d65b12f5d863cd25e7155265e432e357802c96a6cf197d87371d1d9a3</citedby><cites>FETCH-LOGICAL-c474t-a8632b42d65b12f5d863cd25e7155265e432e357802c96a6cf197d87371d1d9a3</cites><orcidid>0000-0003-1332-4234 ; 0000-0001-6136-6303 ; 0000-0002-7227-7944 ; 0000-0003-1569-1812 ; 0000-0002-0179-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9184863$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Pellegrini, Alessandro</creatorcontrib><creatorcontrib>Di Sanzo, Pierangelo</creatorcontrib><creatorcontrib>Bevilacqua, Beatrice</creatorcontrib><creatorcontrib>Duca, Gabriella</creatorcontrib><creatorcontrib>Pascarella, Domenico</creatorcontrib><creatorcontrib>Palumbo, Roberto</creatorcontrib><creatorcontrib>Ramos, Juan Jose</creatorcontrib><creatorcontrib>Piera, Miquel Angel</creatorcontrib><creatorcontrib>Gigante, Gabriella</creatorcontrib><title>Simulation-based Evolutionary Optimization of Air Traffic Management</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involvement of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective.</description><subject>Aerospace engineering</subject><subject>Air Traffic Control</subject><subject>Air traffic management</subject><subject>Aircraft control</subject><subject>Analytical models</subject><subject>Artificial intelligence</subject><subject>Atmospheric modeling</subject><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Context</subject><subject>Decision analysis</subject><subject>Design optimization</subject><subject>Distributed Optimization</subject><subject>Evolutionary Algorithms</subject><subject>Measurement</subject><subject>Modeling and Simulation</subject><subject>Multi-Objective Optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Simulation</subject><subject>Support to Strategic Design</subject><subject>Traffic information</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKVf0Eskzil-OzlWoUCloh5azpZjO5WrJC5OggRfj9ugir3sc2Z3B4A5gguEYP60LIrVbrfAEMMFgRihHN-ACUY8Twkj_PZffA9mXXeE0bJYYmICnneuGWrVO9-mpeqsSVZfvh7OuQrfyfbUu8b9XPqJr5KlC8k-qKpyOnlXrTrYxrb9A7irVN3Z2Z-fgo-X1b54Szfb13Wx3KSaCtqnKuMElxQbzkqEK2Zirg1mViDGMGeWEmwJExnEOueK6wrlwmSCCGSQyRWZgvXIa7w6ylNwTbxReuXkpeDDQarQO11bSSqmtCothTSjWolSW2YJFrQ0RJRQR67HkesU_Odgu14e_RDaeL7ElFEuBGVZnCLjlA6-64KtrlsRlGf15ai-PKsv_9SPqPmIctbaKyJHGY0fk1868n-J</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Pellegrini, Alessandro</creator><creator>Di Sanzo, Pierangelo</creator><creator>Bevilacqua, Beatrice</creator><creator>Duca, Gabriella</creator><creator>Pascarella, Domenico</creator><creator>Palumbo, Roberto</creator><creator>Ramos, Juan Jose</creator><creator>Piera, Miquel Angel</creator><creator>Gigante, Gabriella</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1332-4234</orcidid><orcidid>https://orcid.org/0000-0001-6136-6303</orcidid><orcidid>https://orcid.org/0000-0002-7227-7944</orcidid><orcidid>https://orcid.org/0000-0003-1569-1812</orcidid><orcidid>https://orcid.org/0000-0002-0179-9868</orcidid></search><sort><creationdate>20200101</creationdate><title>Simulation-based Evolutionary Optimization of Air Traffic Management</title><author>Pellegrini, Alessandro ; Di Sanzo, Pierangelo ; Bevilacqua, Beatrice ; Duca, Gabriella ; Pascarella, Domenico ; Palumbo, Roberto ; Ramos, Juan Jose ; Piera, Miquel Angel ; Gigante, Gabriella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a8632b42d65b12f5d863cd25e7155265e432e357802c96a6cf197d87371d1d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace engineering</topic><topic>Air Traffic Control</topic><topic>Air traffic management</topic><topic>Aircraft control</topic><topic>Analytical models</topic><topic>Artificial intelligence</topic><topic>Atmospheric modeling</topic><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Context</topic><topic>Decision analysis</topic><topic>Design optimization</topic><topic>Distributed Optimization</topic><topic>Evolutionary Algorithms</topic><topic>Measurement</topic><topic>Modeling and Simulation</topic><topic>Multi-Objective Optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Simulation</topic><topic>Support to Strategic Design</topic><topic>Traffic information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pellegrini, Alessandro</creatorcontrib><creatorcontrib>Di Sanzo, Pierangelo</creatorcontrib><creatorcontrib>Bevilacqua, Beatrice</creatorcontrib><creatorcontrib>Duca, Gabriella</creatorcontrib><creatorcontrib>Pascarella, Domenico</creatorcontrib><creatorcontrib>Palumbo, Roberto</creatorcontrib><creatorcontrib>Ramos, Juan Jose</creatorcontrib><creatorcontrib>Piera, Miquel Angel</creatorcontrib><creatorcontrib>Gigante, Gabriella</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pellegrini, Alessandro</au><au>Di Sanzo, Pierangelo</au><au>Bevilacqua, Beatrice</au><au>Duca, Gabriella</au><au>Pascarella, Domenico</au><au>Palumbo, Roberto</au><au>Ramos, Juan Jose</au><au>Piera, Miquel Angel</au><au>Gigante, Gabriella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation-based Evolutionary Optimization of Air Traffic Management</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the context of aerospace engineering, the optimization of processes may often require to solve multi-objective optimization problems, including mixed variables, multi-modal and non-differentiable quantities, possibly involving highly-expensive objective function evaluations. In Air Traffic Management (ATM), the optimization of procedures and protocols becomes even more complicated, due to the involvement of human controllers, which act as final decision points in the control chain. In this article, we propose the use of computational intelligence techniques, such as Agent-Based Modelling and Simulation (ABMS) and Evolutionary Computing (EC), to design a simulation-based distributed architecture to optimize control plans and procedures in the context of ATM. We rely on Agent-Based fast-time simulations to carry out offline what-if analysis of multiple scenarios, also taking into account human-related decisions, during the strategic or pre-tactical phases. The scenarios are constructed using real-world traffic data traces, while multiple optimization variables governed by an EC algorithm allow to explore the search space to identify the best solutions. Our optimization approach relies on ad-hoc multi-objective performance metrics which allow to assess the goodness of the control of aircraft and air traffic regulations. We present experimental results which prove the viability of our approach, comparing them with real-world data traces, and proving their meaningfulness from an Air Traffic Control perspective.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3021192</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1332-4234</orcidid><orcidid>https://orcid.org/0000-0001-6136-6303</orcidid><orcidid>https://orcid.org/0000-0002-7227-7944</orcidid><orcidid>https://orcid.org/0000-0003-1569-1812</orcidid><orcidid>https://orcid.org/0000-0002-0179-9868</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9184863 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Aerospace engineering Air Traffic Control Air traffic management Aircraft control Analytical models Artificial intelligence Atmospheric modeling Complexity theory Computational modeling Computer architecture Context Decision analysis Design optimization Distributed Optimization Evolutionary Algorithms Measurement Modeling and Simulation Multi-Objective Optimization Multiple objective analysis Optimization Performance measurement Simulation Support to Strategic Design Traffic information |
title | Simulation-based Evolutionary Optimization of Air Traffic Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation-based%20Evolutionary%20Optimization%20of%20Air%20Traffic%20Management&rft.jtitle=IEEE%20access&rft.au=Pellegrini,%20Alessandro&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3021192&rft_dat=%3Cproquest_ieee_%3E2454677458%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454677458&rft_id=info:pmid/&rft_ieee_id=9184863&rft_doaj_id=oai_doaj_org_article_3f5acabe40484ca7bce5e3274bd37b0c&rfr_iscdi=true |