An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas

The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.167939-167949
Hauptverfasser: Wang, Lu, Wang, Chaoli, Sun, Zhanquan, Chen, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167949
container_issue
container_start_page 167939
container_title IEEE access
container_volume 8
creator Wang, Lu
Wang, Chaoli
Sun, Zhanquan
Chen, Sheng
description The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of the positive and negative samples but it ignores the background regions, which also contain a large amount of information. In this work, we propose an improved dice loss that can mine the information in background areas and modify network architecture to improve performance. The improved dice loss called weighted soft dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the background area will be added to the calculation when calculating dice loss. It can also soft the hard label in the lesion area to increase the robustness of the model to noise label. What's more, we propose to cascade Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-based loss function, the optimization directions of them are different. The cascaded loss function can make full use of the advantages of both and greatly improve model performance. In addition, we add a simple but effective channel attention module to the decode module of U-net. We experimented on the ChestX-ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice coefficient by 1.36%.
doi_str_mv 10.1109/ACCESS.2020.3020475
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9180275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9180275</ieee_id><doaj_id>oai_doaj_org_article_0522157f283d458385f0ee5c2bb84d4e</doaj_id><sourcerecordid>2454681044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1ff0488b157d857ff4e13a3f64ec65b9e72e547e2ad54f30b188431e16a9c2c33</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVKVf0Islzil-Js4xKgUilYdUOFtOsk5TNXFx0or-PS6pKnxYr3ZnZlc7QTAleEYITh7S-XyxWs0opnjGfOCxuApGlERJyASLrv_lt8Gk6zbYP-lLIh4FKm1R1uycPUCJHusC0NJ2HTLWoY8W9o3t19bpH7SCqoG2131tW5Qf0Wvd1m2F-jWgrPXoZuhYg96g8vkBUOpAd3fBjdHbDibnfxx8PS0-5y_h8v05m6fLsOAx70NiDOZS5kTEpRSxMRwI08xEHIpI5AnEFASPgepScMNwTqTkjACJdFLQgrFxkA26pdUbtXN1o91RWV2rv4J1ldKur4stKCwo9XMMlazkQjIpDAYQBc1zyUsOXut-0PJn-d5D16uN3bvWr68oFzySBHPuUWxAFc5fzIG5TCVYnYxRgzHqZIw6G-NZ04FVA8CFkRCJqe_-AoRIiFI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454681044</pqid></control><display><type>article</type><title>An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Lu ; Wang, Chaoli ; Sun, Zhanquan ; Chen, Sheng</creator><creatorcontrib>Wang, Lu ; Wang, Chaoli ; Sun, Zhanquan ; Chen, Sheng</creatorcontrib><description>The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of the positive and negative samples but it ignores the background regions, which also contain a large amount of information. In this work, we propose an improved dice loss that can mine the information in background areas and modify network architecture to improve performance. The improved dice loss called weighted soft dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the background area will be added to the calculation when calculating dice loss. It can also soft the hard label in the lesion area to increase the robustness of the model to noise label. What's more, we propose to cascade Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-based loss function, the optimization directions of them are different. The cascaded loss function can make full use of the advantages of both and greatly improve model performance. In addition, we add a simple but effective channel attention module to the decode module of U-net. We experimented on the ChestX-ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice coefficient by 1.36%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3020475</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; Coefficients ; Computer architecture ; dice loss ; Entropy ; Feature extraction ; Image segmentation ; Lesions ; Lung ; Medical imaging ; Modules ; Optimization ; Performance enhancement ; Pneumothorax ; sample distribution ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.167939-167949</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1ff0488b157d857ff4e13a3f64ec65b9e72e547e2ad54f30b188431e16a9c2c33</citedby><cites>FETCH-LOGICAL-c474t-1ff0488b157d857ff4e13a3f64ec65b9e72e547e2ad54f30b188431e16a9c2c33</cites><orcidid>0000-0001-8314-0612 ; 0000-0002-6772-5191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9180275$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><title>An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas</title><title>IEEE access</title><addtitle>Access</addtitle><description>The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of the positive and negative samples but it ignores the background regions, which also contain a large amount of information. In this work, we propose an improved dice loss that can mine the information in background areas and modify network architecture to improve performance. The improved dice loss called weighted soft dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the background area will be added to the calculation when calculating dice loss. It can also soft the hard label in the lesion area to increase the robustness of the model to noise label. What's more, we propose to cascade Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-based loss function, the optimization directions of them are different. The cascaded loss function can make full use of the advantages of both and greatly improve model performance. In addition, we add a simple but effective channel attention module to the decode module of U-net. We experimented on the ChestX-ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice coefficient by 1.36%.</description><subject>Biomedical imaging</subject><subject>Coefficients</subject><subject>Computer architecture</subject><subject>dice loss</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Lung</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Pneumothorax</subject><subject>sample distribution</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVKVf0Islzil-Js4xKgUilYdUOFtOsk5TNXFx0or-PS6pKnxYr3ZnZlc7QTAleEYITh7S-XyxWs0opnjGfOCxuApGlERJyASLrv_lt8Gk6zbYP-lLIh4FKm1R1uycPUCJHusC0NJ2HTLWoY8W9o3t19bpH7SCqoG2131tW5Qf0Wvd1m2F-jWgrPXoZuhYg96g8vkBUOpAd3fBjdHbDibnfxx8PS0-5y_h8v05m6fLsOAx70NiDOZS5kTEpRSxMRwI08xEHIpI5AnEFASPgepScMNwTqTkjACJdFLQgrFxkA26pdUbtXN1o91RWV2rv4J1ldKur4stKCwo9XMMlazkQjIpDAYQBc1zyUsOXut-0PJn-d5D16uN3bvWr68oFzySBHPuUWxAFc5fzIG5TCVYnYxRgzHqZIw6G-NZ04FVA8CFkRCJqe_-AoRIiFI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Lu</creator><creator>Wang, Chaoli</creator><creator>Sun, Zhanquan</creator><creator>Chen, Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8314-0612</orcidid><orcidid>https://orcid.org/0000-0002-6772-5191</orcidid></search><sort><creationdate>2020</creationdate><title>An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas</title><author>Wang, Lu ; Wang, Chaoli ; Sun, Zhanquan ; Chen, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1ff0488b157d857ff4e13a3f64ec65b9e72e547e2ad54f30b188431e16a9c2c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical imaging</topic><topic>Coefficients</topic><topic>Computer architecture</topic><topic>dice loss</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Lung</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Pneumothorax</topic><topic>sample distribution</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lu</au><au>Wang, Chaoli</au><au>Sun, Zhanquan</au><au>Chen, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>167939</spage><epage>167949</epage><pages>167939-167949</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of the positive and negative samples but it ignores the background regions, which also contain a large amount of information. In this work, we propose an improved dice loss that can mine the information in background areas and modify network architecture to improve performance. The improved dice loss called weighted soft dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the background area will be added to the calculation when calculating dice loss. It can also soft the hard label in the lesion area to increase the robustness of the model to noise label. What's more, we propose to cascade Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-based loss function, the optimization directions of them are different. The cascaded loss function can make full use of the advantages of both and greatly improve model performance. In addition, we add a simple but effective channel attention module to the decode module of U-net. We experimented on the ChestX-ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice coefficient by 1.36%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3020475</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8314-0612</orcidid><orcidid>https://orcid.org/0000-0002-6772-5191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.167939-167949
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9180275
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Biomedical imaging
Coefficients
Computer architecture
dice loss
Entropy
Feature extraction
Image segmentation
Lesions
Lung
Medical imaging
Modules
Optimization
Performance enhancement
Pneumothorax
sample distribution
Task analysis
title An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Dice%20Loss%20for%20Pneumothorax%20Segmentation%20by%20Mining%20the%20Information%20of%20Negative%20Areas&rft.jtitle=IEEE%20access&rft.au=Wang,%20Lu&rft.date=2020&rft.volume=8&rft.spage=167939&rft.epage=167949&rft.pages=167939-167949&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3020475&rft_dat=%3Cproquest_ieee_%3E2454681044%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454681044&rft_id=info:pmid/&rft_ieee_id=9180275&rft_doaj_id=oai_doaj_org_article_0522157f283d458385f0ee5c2bb84d4e&rfr_iscdi=true