An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas
The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving a...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.167939-167949 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167949 |
---|---|
container_issue | |
container_start_page | 167939 |
container_title | IEEE access |
container_volume | 8 |
creator | Wang, Lu Wang, Chaoli Sun, Zhanquan Chen, Sheng |
description | The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of the positive and negative samples but it ignores the background regions, which also contain a large amount of information. In this work, we propose an improved dice loss that can mine the information in background areas and modify network architecture to improve performance. The improved dice loss called weighted soft dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the background area will be added to the calculation when calculating dice loss. It can also soft the hard label in the lesion area to increase the robustness of the model to noise label. What's more, we propose to cascade Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-based loss function, the optimization directions of them are different. The cascaded loss function can make full use of the advantages of both and greatly improve model performance. In addition, we add a simple but effective channel attention module to the decode module of U-net. We experimented on the ChestX-ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice coefficient by 1.36%. |
doi_str_mv | 10.1109/ACCESS.2020.3020475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9180275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9180275</ieee_id><doaj_id>oai_doaj_org_article_0522157f283d458385f0ee5c2bb84d4e</doaj_id><sourcerecordid>2454681044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1ff0488b157d857ff4e13a3f64ec65b9e72e547e2ad54f30b188431e16a9c2c33</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVKVf0Islzil-Js4xKgUilYdUOFtOsk5TNXFx0or-PS6pKnxYr3ZnZlc7QTAleEYITh7S-XyxWs0opnjGfOCxuApGlERJyASLrv_lt8Gk6zbYP-lLIh4FKm1R1uycPUCJHusC0NJ2HTLWoY8W9o3t19bpH7SCqoG2131tW5Qf0Wvd1m2F-jWgrPXoZuhYg96g8vkBUOpAd3fBjdHbDibnfxx8PS0-5y_h8v05m6fLsOAx70NiDOZS5kTEpRSxMRwI08xEHIpI5AnEFASPgepScMNwTqTkjACJdFLQgrFxkA26pdUbtXN1o91RWV2rv4J1ldKur4stKCwo9XMMlazkQjIpDAYQBc1zyUsOXut-0PJn-d5D16uN3bvWr68oFzySBHPuUWxAFc5fzIG5TCVYnYxRgzHqZIw6G-NZ04FVA8CFkRCJqe_-AoRIiFI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454681044</pqid></control><display><type>article</type><title>An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Lu ; Wang, Chaoli ; Sun, Zhanquan ; Chen, Sheng</creator><creatorcontrib>Wang, Lu ; Wang, Chaoli ; Sun, Zhanquan ; Chen, Sheng</creatorcontrib><description>The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of the positive and negative samples but it ignores the background regions, which also contain a large amount of information. In this work, we propose an improved dice loss that can mine the information in background areas and modify network architecture to improve performance. The improved dice loss called weighted soft dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the background area will be added to the calculation when calculating dice loss. It can also soft the hard label in the lesion area to increase the robustness of the model to noise label. What's more, we propose to cascade Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-based loss function, the optimization directions of them are different. The cascaded loss function can make full use of the advantages of both and greatly improve model performance. In addition, we add a simple but effective channel attention module to the decode module of U-net. We experimented on the ChestX-ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice coefficient by 1.36%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3020475</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; Coefficients ; Computer architecture ; dice loss ; Entropy ; Feature extraction ; Image segmentation ; Lesions ; Lung ; Medical imaging ; Modules ; Optimization ; Performance enhancement ; Pneumothorax ; sample distribution ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.167939-167949</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1ff0488b157d857ff4e13a3f64ec65b9e72e547e2ad54f30b188431e16a9c2c33</citedby><cites>FETCH-LOGICAL-c474t-1ff0488b157d857ff4e13a3f64ec65b9e72e547e2ad54f30b188431e16a9c2c33</cites><orcidid>0000-0001-8314-0612 ; 0000-0002-6772-5191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9180275$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><title>An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas</title><title>IEEE access</title><addtitle>Access</addtitle><description>The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of the positive and negative samples but it ignores the background regions, which also contain a large amount of information. In this work, we propose an improved dice loss that can mine the information in background areas and modify network architecture to improve performance. The improved dice loss called weighted soft dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the background area will be added to the calculation when calculating dice loss. It can also soft the hard label in the lesion area to increase the robustness of the model to noise label. What's more, we propose to cascade Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-based loss function, the optimization directions of them are different. The cascaded loss function can make full use of the advantages of both and greatly improve model performance. In addition, we add a simple but effective channel attention module to the decode module of U-net. We experimented on the ChestX-ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice coefficient by 1.36%.</description><subject>Biomedical imaging</subject><subject>Coefficients</subject><subject>Computer architecture</subject><subject>dice loss</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Lung</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Optimization</subject><subject>Performance enhancement</subject><subject>Pneumothorax</subject><subject>sample distribution</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVKVf0Islzil-Js4xKgUilYdUOFtOsk5TNXFx0or-PS6pKnxYr3ZnZlc7QTAleEYITh7S-XyxWs0opnjGfOCxuApGlERJyASLrv_lt8Gk6zbYP-lLIh4FKm1R1uycPUCJHusC0NJ2HTLWoY8W9o3t19bpH7SCqoG2131tW5Qf0Wvd1m2F-jWgrPXoZuhYg96g8vkBUOpAd3fBjdHbDibnfxx8PS0-5y_h8v05m6fLsOAx70NiDOZS5kTEpRSxMRwI08xEHIpI5AnEFASPgepScMNwTqTkjACJdFLQgrFxkA26pdUbtXN1o91RWV2rv4J1ldKur4stKCwo9XMMlazkQjIpDAYQBc1zyUsOXut-0PJn-d5D16uN3bvWr68oFzySBHPuUWxAFc5fzIG5TCVYnYxRgzHqZIw6G-NZ04FVA8CFkRCJqe_-AoRIiFI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Lu</creator><creator>Wang, Chaoli</creator><creator>Sun, Zhanquan</creator><creator>Chen, Sheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8314-0612</orcidid><orcidid>https://orcid.org/0000-0002-6772-5191</orcidid></search><sort><creationdate>2020</creationdate><title>An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas</title><author>Wang, Lu ; Wang, Chaoli ; Sun, Zhanquan ; Chen, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1ff0488b157d857ff4e13a3f64ec65b9e72e547e2ad54f30b188431e16a9c2c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical imaging</topic><topic>Coefficients</topic><topic>Computer architecture</topic><topic>dice loss</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Lung</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Optimization</topic><topic>Performance enhancement</topic><topic>Pneumothorax</topic><topic>sample distribution</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Wang, Chaoli</creatorcontrib><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Chen, Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lu</au><au>Wang, Chaoli</au><au>Sun, Zhanquan</au><au>Chen, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>167939</spage><epage>167949</epage><pages>167939-167949</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The lesion regions of a medical image account for only a small part of the image, and a critical imbalance exists in the distribution of the positive and negative samples, which affects the segmentation performance of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of the positive and negative samples but it ignores the background regions, which also contain a large amount of information. In this work, we propose an improved dice loss that can mine the information in background areas and modify network architecture to improve performance. The improved dice loss called weighted soft dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the background area will be added to the calculation when calculating dice loss. It can also soft the hard label in the lesion area to increase the robustness of the model to noise label. What's more, we propose to cascade Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-based loss function, the optimization directions of them are different. The cascaded loss function can make full use of the advantages of both and greatly improve model performance. In addition, we add a simple but effective channel attention module to the decode module of U-net. We experimented on the ChestX-ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice coefficient by 1.36%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3020475</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8314-0612</orcidid><orcidid>https://orcid.org/0000-0002-6772-5191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.167939-167949 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9180275 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Biomedical imaging Coefficients Computer architecture dice loss Entropy Feature extraction Image segmentation Lesions Lung Medical imaging Modules Optimization Performance enhancement Pneumothorax sample distribution Task analysis |
title | An Improved Dice Loss for Pneumothorax Segmentation by Mining the Information of Negative Areas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Dice%20Loss%20for%20Pneumothorax%20Segmentation%20by%20Mining%20the%20Information%20of%20Negative%20Areas&rft.jtitle=IEEE%20access&rft.au=Wang,%20Lu&rft.date=2020&rft.volume=8&rft.spage=167939&rft.epage=167949&rft.pages=167939-167949&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3020475&rft_dat=%3Cproquest_ieee_%3E2454681044%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454681044&rft_id=info:pmid/&rft_ieee_id=9180275&rft_doaj_id=oai_doaj_org_article_0522157f283d458385f0ee5c2bb84d4e&rfr_iscdi=true |