Tunable and Reconfigurable Dual-Band Chiral Metamirror

Chiral metasurfaces have recently undergone a dramatic development, due to their important applications in optics, chemistry and biology. However, the tunability and reconfigurability of the chiral metasurfaces remain challenges. Then, we proposed an S-shaped metamirror consisting of a MIM (Au-LiNbO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2020-10, Vol.12 (5), p.1-8
Hauptverfasser: Fan, Junxing, Lei, Ting, Yuan, Xiaocong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 5
container_start_page 1
container_title IEEE photonics journal
container_volume 12
creator Fan, Junxing
Lei, Ting
Yuan, Xiaocong
description Chiral metasurfaces have recently undergone a dramatic development, due to their important applications in optics, chemistry and biology. However, the tunability and reconfigurability of the chiral metasurfaces remain challenges. Then, we proposed an S-shaped metamirror consisting of a MIM (Au-LiNbO 3 −Au) structure with a dual-band chiral absorption in the near-infrared range. The proposed structure has two resonant wavelengths with a giant chiro-optical effect. The giant chiro-optical effect originates from the different plasmonic resonances induced by the incident circularly polarized light (CPL) with opposite spin states. By tuning the voltage and thus tuning the refractive index of the lithium niobate (LiNbO 3 ), chiral resonant wavelengths can be dynamically adjusted in a large range as desired. Furthermore, by tuning the refractive index of LiNbO 3 , we can move the short-wavelength resonance peak to the position of another long-wavelength resonance peak. Therefore, the chiral metamirror can be dynamically reconfigured at the position of the long-wavelength resonance peak. The work offers a further step in developing tunable and reconfigurable chirality for possible applications including reconfigurable chiral hologram, chiral-selective absorber and other chiral components in near-infrared region.
doi_str_mv 10.1109/JPHOT.2020.3020090
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9180039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9180039</ieee_id><doaj_id>oai_doaj_org_article_fa50cc3db68246febc853ac26859e496</doaj_id><sourcerecordid>2451194598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-4d0055e4cd0e5355eeab1b7967d4529f557f2bd8c79f0c204c49eef93912ff7b3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwB-AyiXOH89nmCONjQ0NDaJyjNHVGp64ZaXvg39NtaOJiW7bf19ZDyDWFMaWg717fp4vlmAGDMe8DaDghA6oFT0BJefqvPicXTbMGUJpKPSBq2dU2r3Bk62L0gS7Uvlx1cd967GyVPOwGk68y2mr0hq3dlDGGeEnOvK0avPrLQ_L5_LScTJP54mU2uZ8nToBsE1EASInCFYCS9xXanOapVmkhJNNeytSzvMhcqj04BsIJjeg115R5n-Z8SGYH3yLYtdnGcmPjjwm2NPtGiCtjY1u6Co23EpzjRa4yJpTH3GWSW8dUJjUKrXqv24PXNobvDpvWrEMX6_59w4SkPSGps36LHbZcDE0T0R-vUjA71mbP2uxYmz_WvejmICoR8SjQNAPgmv8C-9V5KQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451194598</pqid></control><display><type>article</type><title>Tunable and Reconfigurable Dual-Band Chiral Metamirror</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fan, Junxing ; Lei, Ting ; Yuan, Xiaocong</creator><creatorcontrib>Fan, Junxing ; Lei, Ting ; Yuan, Xiaocong</creatorcontrib><description>Chiral metasurfaces have recently undergone a dramatic development, due to their important applications in optics, chemistry and biology. However, the tunability and reconfigurability of the chiral metasurfaces remain challenges. Then, we proposed an S-shaped metamirror consisting of a MIM (Au-LiNbO 3 −Au) structure with a dual-band chiral absorption in the near-infrared range. The proposed structure has two resonant wavelengths with a giant chiro-optical effect. The giant chiro-optical effect originates from the different plasmonic resonances induced by the incident circularly polarized light (CPL) with opposite spin states. By tuning the voltage and thus tuning the refractive index of the lithium niobate (LiNbO 3 ), chiral resonant wavelengths can be dynamically adjusted in a large range as desired. Furthermore, by tuning the refractive index of LiNbO 3 , we can move the short-wavelength resonance peak to the position of another long-wavelength resonance peak. Therefore, the chiral metamirror can be dynamically reconfigured at the position of the long-wavelength resonance peak. The work offers a further step in developing tunable and reconfigurable chirality for possible applications including reconfigurable chiral hologram, chiral-selective absorber and other chiral components in near-infrared region.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2020.3020090</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Chirality ; Circular polarization ; Dielectrics ; Electric fields ; Lithium niobate ; Lithium niobates ; Magnetic fields ; Magnetic moments ; Magnetic resonance ; Metasurface ; Near infrared radiation ; Optical polarization ; Polarized light ; reconfigurable ; Reconfiguration ; Refractivity ; Resonance ; tunable ; Tuning ; Wavelengths</subject><ispartof>IEEE photonics journal, 2020-10, Vol.12 (5), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-4d0055e4cd0e5355eeab1b7967d4529f557f2bd8c79f0c204c49eef93912ff7b3</citedby><cites>FETCH-LOGICAL-c405t-4d0055e4cd0e5355eeab1b7967d4529f557f2bd8c79f0c204c49eef93912ff7b3</cites><orcidid>0000-0003-2605-9003 ; 0000-0003-3424-521X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9180039$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Fan, Junxing</creatorcontrib><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Yuan, Xiaocong</creatorcontrib><title>Tunable and Reconfigurable Dual-Band Chiral Metamirror</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>Chiral metasurfaces have recently undergone a dramatic development, due to their important applications in optics, chemistry and biology. However, the tunability and reconfigurability of the chiral metasurfaces remain challenges. Then, we proposed an S-shaped metamirror consisting of a MIM (Au-LiNbO 3 −Au) structure with a dual-band chiral absorption in the near-infrared range. The proposed structure has two resonant wavelengths with a giant chiro-optical effect. The giant chiro-optical effect originates from the different plasmonic resonances induced by the incident circularly polarized light (CPL) with opposite spin states. By tuning the voltage and thus tuning the refractive index of the lithium niobate (LiNbO 3 ), chiral resonant wavelengths can be dynamically adjusted in a large range as desired. Furthermore, by tuning the refractive index of LiNbO 3 , we can move the short-wavelength resonance peak to the position of another long-wavelength resonance peak. Therefore, the chiral metamirror can be dynamically reconfigured at the position of the long-wavelength resonance peak. The work offers a further step in developing tunable and reconfigurable chirality for possible applications including reconfigurable chiral hologram, chiral-selective absorber and other chiral components in near-infrared region.</description><subject>Chirality</subject><subject>Circular polarization</subject><subject>Dielectrics</subject><subject>Electric fields</subject><subject>Lithium niobate</subject><subject>Lithium niobates</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>Magnetic resonance</subject><subject>Metasurface</subject><subject>Near infrared radiation</subject><subject>Optical polarization</subject><subject>Polarized light</subject><subject>reconfigurable</subject><subject>Reconfiguration</subject><subject>Refractivity</subject><subject>Resonance</subject><subject>tunable</subject><subject>Tuning</subject><subject>Wavelengths</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1PwzAMhiMEEmPwB-AyiXOH89nmCONjQ0NDaJyjNHVGp64ZaXvg39NtaOJiW7bf19ZDyDWFMaWg717fp4vlmAGDMe8DaDghA6oFT0BJefqvPicXTbMGUJpKPSBq2dU2r3Bk62L0gS7Uvlx1cd967GyVPOwGk68y2mr0hq3dlDGGeEnOvK0avPrLQ_L5_LScTJP54mU2uZ8nToBsE1EASInCFYCS9xXanOapVmkhJNNeytSzvMhcqj04BsIJjeg115R5n-Z8SGYH3yLYtdnGcmPjjwm2NPtGiCtjY1u6Co23EpzjRa4yJpTH3GWSW8dUJjUKrXqv24PXNobvDpvWrEMX6_59w4SkPSGps36LHbZcDE0T0R-vUjA71mbP2uxYmz_WvejmICoR8SjQNAPgmv8C-9V5KQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Fan, Junxing</creator><creator>Lei, Ting</creator><creator>Yuan, Xiaocong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2605-9003</orcidid><orcidid>https://orcid.org/0000-0003-3424-521X</orcidid></search><sort><creationdate>20201001</creationdate><title>Tunable and Reconfigurable Dual-Band Chiral Metamirror</title><author>Fan, Junxing ; Lei, Ting ; Yuan, Xiaocong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-4d0055e4cd0e5355eeab1b7967d4529f557f2bd8c79f0c204c49eef93912ff7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chirality</topic><topic>Circular polarization</topic><topic>Dielectrics</topic><topic>Electric fields</topic><topic>Lithium niobate</topic><topic>Lithium niobates</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>Magnetic resonance</topic><topic>Metasurface</topic><topic>Near infrared radiation</topic><topic>Optical polarization</topic><topic>Polarized light</topic><topic>reconfigurable</topic><topic>Reconfiguration</topic><topic>Refractivity</topic><topic>Resonance</topic><topic>tunable</topic><topic>Tuning</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Junxing</creatorcontrib><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Yuan, Xiaocong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Junxing</au><au>Lei, Ting</au><au>Yuan, Xiaocong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable and Reconfigurable Dual-Band Chiral Metamirror</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>12</volume><issue>5</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>Chiral metasurfaces have recently undergone a dramatic development, due to their important applications in optics, chemistry and biology. However, the tunability and reconfigurability of the chiral metasurfaces remain challenges. Then, we proposed an S-shaped metamirror consisting of a MIM (Au-LiNbO 3 −Au) structure with a dual-band chiral absorption in the near-infrared range. The proposed structure has two resonant wavelengths with a giant chiro-optical effect. The giant chiro-optical effect originates from the different plasmonic resonances induced by the incident circularly polarized light (CPL) with opposite spin states. By tuning the voltage and thus tuning the refractive index of the lithium niobate (LiNbO 3 ), chiral resonant wavelengths can be dynamically adjusted in a large range as desired. Furthermore, by tuning the refractive index of LiNbO 3 , we can move the short-wavelength resonance peak to the position of another long-wavelength resonance peak. Therefore, the chiral metamirror can be dynamically reconfigured at the position of the long-wavelength resonance peak. The work offers a further step in developing tunable and reconfigurable chirality for possible applications including reconfigurable chiral hologram, chiral-selective absorber and other chiral components in near-infrared region.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2020.3020090</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2605-9003</orcidid><orcidid>https://orcid.org/0000-0003-3424-521X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2020-10, Vol.12 (5), p.1-8
issn 1943-0655
1943-0655
1943-0647
language eng
recordid cdi_ieee_primary_9180039
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Chirality
Circular polarization
Dielectrics
Electric fields
Lithium niobate
Lithium niobates
Magnetic fields
Magnetic moments
Magnetic resonance
Metasurface
Near infrared radiation
Optical polarization
Polarized light
reconfigurable
Reconfiguration
Refractivity
Resonance
tunable
Tuning
Wavelengths
title Tunable and Reconfigurable Dual-Band Chiral Metamirror
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20and%20Reconfigurable%20Dual-Band%20Chiral%20Metamirror&rft.jtitle=IEEE%20photonics%20journal&rft.au=Fan,%20Junxing&rft.date=2020-10-01&rft.volume=12&rft.issue=5&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2020.3020090&rft_dat=%3Cproquest_ieee_%3E2451194598%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451194598&rft_id=info:pmid/&rft_ieee_id=9180039&rft_doaj_id=oai_doaj_org_article_fa50cc3db68246febc853ac26859e496&rfr_iscdi=true