A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection

A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2021-02, Vol.26 (1), p.323-334
Hauptverfasser: Tang, Hui, He, Sifeng, Zhu, Zhongyuan, Gao, Jian, Zhang, Lanyu, Cui, Chengqiang, Chen, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 1
container_start_page 323
container_title IEEE/ASME transactions on mechatronics
container_volume 26
creator Tang, Hui
He, Sifeng
Zhu, Zhongyuan
Gao, Jian
Zhang, Lanyu
Cui, Chengqiang
Chen, Xin
description A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconnection. The developed flexure bonder achieves these functions by designing a flexure force sensing and control mechanism integrated with strain gauge sensing and piezoelectric actuating functions. First, the design, modeling, and optimization of the flexure mechanism are presented. Theoretical analyses, including force sensing and control working principle demonstration, force-strain model derivation, and dynamics response modeling, are carried out. Besides, aiming at highly sensitive force control under high-dynamic working condition, the mechanism is optimized by the multiobjective genetic optimization algorithm. Then, this flexure bonder mechanism is analyzed and evaluated by finite-element analysis. Finally, a series of validation experiments, including force sensing calibration and performance tests, open- and closed-loop force controlling tests, ASL tests, and actual bonding tests, are successfully implemented. The results indicate that the operation accuracy of the developed system is improved up to \pm1 N under 400-N range, and the overshoot of ASL is less than 2 N under 6000-N/s loading speed. All the results uniformly confirm that the proposed bonding system can achieve precise force control and satisfactory chip interconnection performance with the proposed ASL bonding strategy.
doi_str_mv 10.1109/TMECH.2020.3019431
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9177319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9177319</ieee_id><sourcerecordid>2490804168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f1848cc099202e3223fd580d677422854e13a4d895d669dbc773959ab002e5d23</originalsourceid><addsrcrecordid>eNo9UMtOAjEUbYwmIvoDupnE9WBf8-gSRxASiAsxcdcM7R0owXbsFKN_b3no6t7kPO49B6FbggeEYPGwmI-qyYBiigcME8EZOUO9OEmKCX8_jzsuWco5yy7RVddtMMacYNJDbpjMnXVbE9ZGJWPnFSSvYDtjV8nUBlj5OoBOxlv43nlIHp3V4JMn0EYdgOAiZtq0Wps2GapgvqLeNSGd1Vb_mXjlrIUIOnuNLpp628HNafbR23i0qCbp7OV5Wg1nqaIiC2lDSl4qhYWImYBRyhqdlVjnRcEpLTMOhNVclyLTeS70UhUFE5molzjSM01ZH90ffVvvPnfQBblxO2_jSUm5wGWMn5eRRY8s5V3XeWhk681H7X8kwXJfrDwUK_fFylOxUXR3FBkA-BcIEl8ggv0CTmZznQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490804168</pqid></control><display><type>article</type><title>A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Hui ; He, Sifeng ; Zhu, Zhongyuan ; Gao, Jian ; Zhang, Lanyu ; Cui, Chengqiang ; Chen, Xin</creator><creatorcontrib>Tang, Hui ; He, Sifeng ; Zhu, Zhongyuan ; Gao, Jian ; Zhang, Lanyu ; Cui, Chengqiang ; Chen, Xin</creatorcontrib><description>A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconnection. The developed flexure bonder achieves these functions by designing a flexure force sensing and control mechanism integrated with strain gauge sensing and piezoelectric actuating functions. First, the design, modeling, and optimization of the flexure mechanism are presented. Theoretical analyses, including force sensing and control working principle demonstration, force-strain model derivation, and dynamics response modeling, are carried out. Besides, aiming at highly sensitive force control under high-dynamic working condition, the mechanism is optimized by the multiobjective genetic optimization algorithm. Then, this flexure bonder mechanism is analyzed and evaluated by finite-element analysis. Finally, a series of validation experiments, including force sensing calibration and performance tests, open- and closed-loop force controlling tests, ASL tests, and actual bonding tests, are successfully implemented. The results indicate that the operation accuracy of the developed system is improved up to &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\pm&lt;/tex-math&gt;&lt;/inline-formula&gt;1 N under 400-N range, and the overshoot of ASL is less than 2 N under 6000-N/s loading speed. All the results uniformly confirm that the proposed bonding system can achieve precise force control and satisfactory chip interconnection performance with the proposed ASL bonding strategy.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.3019431</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active soft-landing (ASL) ; Algorithms ; Bonding ; compliant mechanism ; Design optimization ; Finite element method ; Flexing ; flexure ; flip-chip bonding ; Force ; Force control ; force sensing ; IEEE transactions ; Landing ; Mechatronics ; Modelling ; Multiple objective analysis ; Performance tests ; Piezoelectricity ; Sensors ; Series (mathematics) ; Strain ; Strain gauges</subject><ispartof>IEEE/ASME transactions on mechatronics, 2021-02, Vol.26 (1), p.323-334</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-f1848cc099202e3223fd580d677422854e13a4d895d669dbc773959ab002e5d23</citedby><cites>FETCH-LOGICAL-c295t-f1848cc099202e3223fd580d677422854e13a4d895d669dbc773959ab002e5d23</cites><orcidid>0000-0003-2155-5235 ; 0000-0001-5625-7751 ; 0000-0002-9342-8596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9177319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9177319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Hui</creatorcontrib><creatorcontrib>He, Sifeng</creatorcontrib><creatorcontrib>Zhu, Zhongyuan</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Zhang, Lanyu</creatorcontrib><creatorcontrib>Cui, Chengqiang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><title>A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconnection. The developed flexure bonder achieves these functions by designing a flexure force sensing and control mechanism integrated with strain gauge sensing and piezoelectric actuating functions. First, the design, modeling, and optimization of the flexure mechanism are presented. Theoretical analyses, including force sensing and control working principle demonstration, force-strain model derivation, and dynamics response modeling, are carried out. Besides, aiming at highly sensitive force control under high-dynamic working condition, the mechanism is optimized by the multiobjective genetic optimization algorithm. Then, this flexure bonder mechanism is analyzed and evaluated by finite-element analysis. Finally, a series of validation experiments, including force sensing calibration and performance tests, open- and closed-loop force controlling tests, ASL tests, and actual bonding tests, are successfully implemented. The results indicate that the operation accuracy of the developed system is improved up to &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\pm&lt;/tex-math&gt;&lt;/inline-formula&gt;1 N under 400-N range, and the overshoot of ASL is less than 2 N under 6000-N/s loading speed. All the results uniformly confirm that the proposed bonding system can achieve precise force control and satisfactory chip interconnection performance with the proposed ASL bonding strategy.</description><subject>Active soft-landing (ASL)</subject><subject>Algorithms</subject><subject>Bonding</subject><subject>compliant mechanism</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Flexing</subject><subject>flexure</subject><subject>flip-chip bonding</subject><subject>Force</subject><subject>Force control</subject><subject>force sensing</subject><subject>IEEE transactions</subject><subject>Landing</subject><subject>Mechatronics</subject><subject>Modelling</subject><subject>Multiple objective analysis</subject><subject>Performance tests</subject><subject>Piezoelectricity</subject><subject>Sensors</subject><subject>Series (mathematics)</subject><subject>Strain</subject><subject>Strain gauges</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOAjEUbYwmIvoDupnE9WBf8-gSRxASiAsxcdcM7R0owXbsFKN_b3no6t7kPO49B6FbggeEYPGwmI-qyYBiigcME8EZOUO9OEmKCX8_jzsuWco5yy7RVddtMMacYNJDbpjMnXVbE9ZGJWPnFSSvYDtjV8nUBlj5OoBOxlv43nlIHp3V4JMn0EYdgOAiZtq0Wps2GapgvqLeNSGd1Vb_mXjlrIUIOnuNLpp628HNafbR23i0qCbp7OV5Wg1nqaIiC2lDSl4qhYWImYBRyhqdlVjnRcEpLTMOhNVclyLTeS70UhUFE5molzjSM01ZH90ffVvvPnfQBblxO2_jSUm5wGWMn5eRRY8s5V3XeWhk681H7X8kwXJfrDwUK_fFylOxUXR3FBkA-BcIEl8ggv0CTmZznQ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Tang, Hui</creator><creator>He, Sifeng</creator><creator>Zhu, Zhongyuan</creator><creator>Gao, Jian</creator><creator>Zhang, Lanyu</creator><creator>Cui, Chengqiang</creator><creator>Chen, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2155-5235</orcidid><orcidid>https://orcid.org/0000-0001-5625-7751</orcidid><orcidid>https://orcid.org/0000-0002-9342-8596</orcidid></search><sort><creationdate>202102</creationdate><title>A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection</title><author>Tang, Hui ; He, Sifeng ; Zhu, Zhongyuan ; Gao, Jian ; Zhang, Lanyu ; Cui, Chengqiang ; Chen, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f1848cc099202e3223fd580d677422854e13a4d895d669dbc773959ab002e5d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active soft-landing (ASL)</topic><topic>Algorithms</topic><topic>Bonding</topic><topic>compliant mechanism</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Flexing</topic><topic>flexure</topic><topic>flip-chip bonding</topic><topic>Force</topic><topic>Force control</topic><topic>force sensing</topic><topic>IEEE transactions</topic><topic>Landing</topic><topic>Mechatronics</topic><topic>Modelling</topic><topic>Multiple objective analysis</topic><topic>Performance tests</topic><topic>Piezoelectricity</topic><topic>Sensors</topic><topic>Series (mathematics)</topic><topic>Strain</topic><topic>Strain gauges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hui</creatorcontrib><creatorcontrib>He, Sifeng</creatorcontrib><creatorcontrib>Zhu, Zhongyuan</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Zhang, Lanyu</creatorcontrib><creatorcontrib>Cui, Chengqiang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Hui</au><au>He, Sifeng</au><au>Zhu, Zhongyuan</au><au>Gao, Jian</au><au>Zhang, Lanyu</au><au>Cui, Chengqiang</au><au>Chen, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2021-02</date><risdate>2021</risdate><volume>26</volume><issue>1</issue><spage>323</spage><epage>334</epage><pages>323-334</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconnection. The developed flexure bonder achieves these functions by designing a flexure force sensing and control mechanism integrated with strain gauge sensing and piezoelectric actuating functions. First, the design, modeling, and optimization of the flexure mechanism are presented. Theoretical analyses, including force sensing and control working principle demonstration, force-strain model derivation, and dynamics response modeling, are carried out. Besides, aiming at highly sensitive force control under high-dynamic working condition, the mechanism is optimized by the multiobjective genetic optimization algorithm. Then, this flexure bonder mechanism is analyzed and evaluated by finite-element analysis. Finally, a series of validation experiments, including force sensing calibration and performance tests, open- and closed-loop force controlling tests, ASL tests, and actual bonding tests, are successfully implemented. The results indicate that the operation accuracy of the developed system is improved up to &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\pm&lt;/tex-math&gt;&lt;/inline-formula&gt;1 N under 400-N range, and the overshoot of ASL is less than 2 N under 6000-N/s loading speed. All the results uniformly confirm that the proposed bonding system can achieve precise force control and satisfactory chip interconnection performance with the proposed ASL bonding strategy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.3019431</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2155-5235</orcidid><orcidid>https://orcid.org/0000-0001-5625-7751</orcidid><orcidid>https://orcid.org/0000-0002-9342-8596</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2021-02, Vol.26 (1), p.323-334
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_9177319
source IEEE Electronic Library (IEL)
subjects Active soft-landing (ASL)
Algorithms
Bonding
compliant mechanism
Design optimization
Finite element method
Flexing
flexure
flip-chip bonding
Force
Force control
force sensing
IEEE transactions
Landing
Mechatronics
Modelling
Multiple objective analysis
Performance tests
Piezoelectricity
Sensors
Series (mathematics)
Strain
Strain gauges
title A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Monolithic%20Force%20Sensing%20Integrated%20Flexure%20Bonder%20Dedicated%20to%20Flip-Chip%20Active%20Soft-Landing%20Interconnection&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Tang,%20Hui&rft.date=2021-02&rft.volume=26&rft.issue=1&rft.spage=323&rft.epage=334&rft.pages=323-334&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.3019431&rft_dat=%3Cproquest_RIE%3E2490804168%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490804168&rft_id=info:pmid/&rft_ieee_id=9177319&rfr_iscdi=true