A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection
A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconne...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2021-02, Vol.26 (1), p.323-334 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 1 |
container_start_page | 323 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 26 |
creator | Tang, Hui He, Sifeng Zhu, Zhongyuan Gao, Jian Zhang, Lanyu Cui, Chengqiang Chen, Xin |
description | A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconnection. The developed flexure bonder achieves these functions by designing a flexure force sensing and control mechanism integrated with strain gauge sensing and piezoelectric actuating functions. First, the design, modeling, and optimization of the flexure mechanism are presented. Theoretical analyses, including force sensing and control working principle demonstration, force-strain model derivation, and dynamics response modeling, are carried out. Besides, aiming at highly sensitive force control under high-dynamic working condition, the mechanism is optimized by the multiobjective genetic optimization algorithm. Then, this flexure bonder mechanism is analyzed and evaluated by finite-element analysis. Finally, a series of validation experiments, including force sensing calibration and performance tests, open- and closed-loop force controlling tests, ASL tests, and actual bonding tests, are successfully implemented. The results indicate that the operation accuracy of the developed system is improved up to \pm1 N under 400-N range, and the overshoot of ASL is less than 2 N under 6000-N/s loading speed. All the results uniformly confirm that the proposed bonding system can achieve precise force control and satisfactory chip interconnection performance with the proposed ASL bonding strategy. |
doi_str_mv | 10.1109/TMECH.2020.3019431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9177319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9177319</ieee_id><sourcerecordid>2490804168</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-f1848cc099202e3223fd580d677422854e13a4d895d669dbc773959ab002e5d23</originalsourceid><addsrcrecordid>eNo9UMtOAjEUbYwmIvoDupnE9WBf8-gSRxASiAsxcdcM7R0owXbsFKN_b3no6t7kPO49B6FbggeEYPGwmI-qyYBiigcME8EZOUO9OEmKCX8_jzsuWco5yy7RVddtMMacYNJDbpjMnXVbE9ZGJWPnFSSvYDtjV8nUBlj5OoBOxlv43nlIHp3V4JMn0EYdgOAiZtq0Wps2GapgvqLeNSGd1Vb_mXjlrIUIOnuNLpp628HNafbR23i0qCbp7OV5Wg1nqaIiC2lDSl4qhYWImYBRyhqdlVjnRcEpLTMOhNVclyLTeS70UhUFE5molzjSM01ZH90ffVvvPnfQBblxO2_jSUm5wGWMn5eRRY8s5V3XeWhk681H7X8kwXJfrDwUK_fFylOxUXR3FBkA-BcIEl8ggv0CTmZznQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490804168</pqid></control><display><type>article</type><title>A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Hui ; He, Sifeng ; Zhu, Zhongyuan ; Gao, Jian ; Zhang, Lanyu ; Cui, Chengqiang ; Chen, Xin</creator><creatorcontrib>Tang, Hui ; He, Sifeng ; Zhu, Zhongyuan ; Gao, Jian ; Zhang, Lanyu ; Cui, Chengqiang ; Chen, Xin</creatorcontrib><description>A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconnection. The developed flexure bonder achieves these functions by designing a flexure force sensing and control mechanism integrated with strain gauge sensing and piezoelectric actuating functions. First, the design, modeling, and optimization of the flexure mechanism are presented. Theoretical analyses, including force sensing and control working principle demonstration, force-strain model derivation, and dynamics response modeling, are carried out. Besides, aiming at highly sensitive force control under high-dynamic working condition, the mechanism is optimized by the multiobjective genetic optimization algorithm. Then, this flexure bonder mechanism is analyzed and evaluated by finite-element analysis. Finally, a series of validation experiments, including force sensing calibration and performance tests, open- and closed-loop force controlling tests, ASL tests, and actual bonding tests, are successfully implemented. The results indicate that the operation accuracy of the developed system is improved up to <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>1 N under 400-N range, and the overshoot of ASL is less than 2 N under 6000-N/s loading speed. All the results uniformly confirm that the proposed bonding system can achieve precise force control and satisfactory chip interconnection performance with the proposed ASL bonding strategy.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2020.3019431</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active soft-landing (ASL) ; Algorithms ; Bonding ; compliant mechanism ; Design optimization ; Finite element method ; Flexing ; flexure ; flip-chip bonding ; Force ; Force control ; force sensing ; IEEE transactions ; Landing ; Mechatronics ; Modelling ; Multiple objective analysis ; Performance tests ; Piezoelectricity ; Sensors ; Series (mathematics) ; Strain ; Strain gauges</subject><ispartof>IEEE/ASME transactions on mechatronics, 2021-02, Vol.26 (1), p.323-334</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-f1848cc099202e3223fd580d677422854e13a4d895d669dbc773959ab002e5d23</citedby><cites>FETCH-LOGICAL-c295t-f1848cc099202e3223fd580d677422854e13a4d895d669dbc773959ab002e5d23</cites><orcidid>0000-0003-2155-5235 ; 0000-0001-5625-7751 ; 0000-0002-9342-8596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9177319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9177319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Hui</creatorcontrib><creatorcontrib>He, Sifeng</creatorcontrib><creatorcontrib>Zhu, Zhongyuan</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Zhang, Lanyu</creatorcontrib><creatorcontrib>Cui, Chengqiang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><title>A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconnection. The developed flexure bonder achieves these functions by designing a flexure force sensing and control mechanism integrated with strain gauge sensing and piezoelectric actuating functions. First, the design, modeling, and optimization of the flexure mechanism are presented. Theoretical analyses, including force sensing and control working principle demonstration, force-strain model derivation, and dynamics response modeling, are carried out. Besides, aiming at highly sensitive force control under high-dynamic working condition, the mechanism is optimized by the multiobjective genetic optimization algorithm. Then, this flexure bonder mechanism is analyzed and evaluated by finite-element analysis. Finally, a series of validation experiments, including force sensing calibration and performance tests, open- and closed-loop force controlling tests, ASL tests, and actual bonding tests, are successfully implemented. The results indicate that the operation accuracy of the developed system is improved up to <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>1 N under 400-N range, and the overshoot of ASL is less than 2 N under 6000-N/s loading speed. All the results uniformly confirm that the proposed bonding system can achieve precise force control and satisfactory chip interconnection performance with the proposed ASL bonding strategy.</description><subject>Active soft-landing (ASL)</subject><subject>Algorithms</subject><subject>Bonding</subject><subject>compliant mechanism</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Flexing</subject><subject>flexure</subject><subject>flip-chip bonding</subject><subject>Force</subject><subject>Force control</subject><subject>force sensing</subject><subject>IEEE transactions</subject><subject>Landing</subject><subject>Mechatronics</subject><subject>Modelling</subject><subject>Multiple objective analysis</subject><subject>Performance tests</subject><subject>Piezoelectricity</subject><subject>Sensors</subject><subject>Series (mathematics)</subject><subject>Strain</subject><subject>Strain gauges</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOAjEUbYwmIvoDupnE9WBf8-gSRxASiAsxcdcM7R0owXbsFKN_b3no6t7kPO49B6FbggeEYPGwmI-qyYBiigcME8EZOUO9OEmKCX8_jzsuWco5yy7RVddtMMacYNJDbpjMnXVbE9ZGJWPnFSSvYDtjV8nUBlj5OoBOxlv43nlIHp3V4JMn0EYdgOAiZtq0Wps2GapgvqLeNSGd1Vb_mXjlrIUIOnuNLpp628HNafbR23i0qCbp7OV5Wg1nqaIiC2lDSl4qhYWImYBRyhqdlVjnRcEpLTMOhNVclyLTeS70UhUFE5molzjSM01ZH90ffVvvPnfQBblxO2_jSUm5wGWMn5eRRY8s5V3XeWhk681H7X8kwXJfrDwUK_fFylOxUXR3FBkA-BcIEl8ggv0CTmZznQ</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Tang, Hui</creator><creator>He, Sifeng</creator><creator>Zhu, Zhongyuan</creator><creator>Gao, Jian</creator><creator>Zhang, Lanyu</creator><creator>Cui, Chengqiang</creator><creator>Chen, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2155-5235</orcidid><orcidid>https://orcid.org/0000-0001-5625-7751</orcidid><orcidid>https://orcid.org/0000-0002-9342-8596</orcidid></search><sort><creationdate>202102</creationdate><title>A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection</title><author>Tang, Hui ; He, Sifeng ; Zhu, Zhongyuan ; Gao, Jian ; Zhang, Lanyu ; Cui, Chengqiang ; Chen, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-f1848cc099202e3223fd580d677422854e13a4d895d669dbc773959ab002e5d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active soft-landing (ASL)</topic><topic>Algorithms</topic><topic>Bonding</topic><topic>compliant mechanism</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Flexing</topic><topic>flexure</topic><topic>flip-chip bonding</topic><topic>Force</topic><topic>Force control</topic><topic>force sensing</topic><topic>IEEE transactions</topic><topic>Landing</topic><topic>Mechatronics</topic><topic>Modelling</topic><topic>Multiple objective analysis</topic><topic>Performance tests</topic><topic>Piezoelectricity</topic><topic>Sensors</topic><topic>Series (mathematics)</topic><topic>Strain</topic><topic>Strain gauges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hui</creatorcontrib><creatorcontrib>He, Sifeng</creatorcontrib><creatorcontrib>Zhu, Zhongyuan</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Zhang, Lanyu</creatorcontrib><creatorcontrib>Cui, Chengqiang</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Hui</au><au>He, Sifeng</au><au>Zhu, Zhongyuan</au><au>Gao, Jian</au><au>Zhang, Lanyu</au><au>Cui, Chengqiang</au><au>Chen, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2021-02</date><risdate>2021</risdate><volume>26</volume><issue>1</issue><spage>323</spage><epage>334</epage><pages>323-334</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>A flip-chip bonding system has a high demand for both force sensing and control functions to ensure the high-quality chip interconnection. The motivation of this article is to combine the ability to enable a common flip-chip bonding system to run in the manner of active soft-landing (ASL) interconnection. The developed flexure bonder achieves these functions by designing a flexure force sensing and control mechanism integrated with strain gauge sensing and piezoelectric actuating functions. First, the design, modeling, and optimization of the flexure mechanism are presented. Theoretical analyses, including force sensing and control working principle demonstration, force-strain model derivation, and dynamics response modeling, are carried out. Besides, aiming at highly sensitive force control under high-dynamic working condition, the mechanism is optimized by the multiobjective genetic optimization algorithm. Then, this flexure bonder mechanism is analyzed and evaluated by finite-element analysis. Finally, a series of validation experiments, including force sensing calibration and performance tests, open- and closed-loop force controlling tests, ASL tests, and actual bonding tests, are successfully implemented. The results indicate that the operation accuracy of the developed system is improved up to <inline-formula><tex-math notation="LaTeX">\pm</tex-math></inline-formula>1 N under 400-N range, and the overshoot of ASL is less than 2 N under 6000-N/s loading speed. All the results uniformly confirm that the proposed bonding system can achieve precise force control and satisfactory chip interconnection performance with the proposed ASL bonding strategy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2020.3019431</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2155-5235</orcidid><orcidid>https://orcid.org/0000-0001-5625-7751</orcidid><orcidid>https://orcid.org/0000-0002-9342-8596</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2021-02, Vol.26 (1), p.323-334 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_9177319 |
source | IEEE Electronic Library (IEL) |
subjects | Active soft-landing (ASL) Algorithms Bonding compliant mechanism Design optimization Finite element method Flexing flexure flip-chip bonding Force Force control force sensing IEEE transactions Landing Mechatronics Modelling Multiple objective analysis Performance tests Piezoelectricity Sensors Series (mathematics) Strain Strain gauges |
title | A Monolithic Force Sensing Integrated Flexure Bonder Dedicated to Flip-Chip Active Soft-Landing Interconnection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Monolithic%20Force%20Sensing%20Integrated%20Flexure%20Bonder%20Dedicated%20to%20Flip-Chip%20Active%20Soft-Landing%20Interconnection&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Tang,%20Hui&rft.date=2021-02&rft.volume=26&rft.issue=1&rft.spage=323&rft.epage=334&rft.pages=323-334&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2020.3019431&rft_dat=%3Cproquest_RIE%3E2490804168%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490804168&rft_id=info:pmid/&rft_ieee_id=9177319&rfr_iscdi=true |