Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses
The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyz...
Gespeichert in:
Veröffentlicht in: | IEEE journal of emerging and selected topics in power electronics 2022-02, Vol.10 (1), p.61-73 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | IEEE journal of emerging and selected topics in power electronics |
container_volume | 10 |
creator | Ge, Baoyun Ludois, Daniel C. |
description | The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h. |
doi_str_mv | 10.1109/JESTPE.2020.3018996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9174847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9174847</ieee_id><sourcerecordid>2624753708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3c42c5ef394aba5e3a86ef756754e366218bc9f7b8f864fa122b93d23444b5be3</originalsourceid><addsrcrecordid>eNpNkdtO3DAQhqOKSiDKE3BjietdfIrtXK7CQltt1ZUK19HEO6ZGIQ62A9qX6bM2URBibuag-f6R5i-KS0bXjNHq-uf2z_1-u-aU07WgzFSV-lKccabMSmlTnnzUWp8WFyk90SkMLyttzop_mx66Y_YWOnKDGeOz7yH70JPgSA0DWJ-ht0igP5A69IfRLn0dxqHz_SP5BTl6i4m4EMkmJZ_yPM5_cRJM_vGzkn_F7rigeCD7DnqIZB_eMM7arxjTfHkzDBAhjwnTt-Krgy7hxXs-Lx5ut_f199Xu992PerNbWUlNXgkruS3RiUpCCyUKMAqdLpUuJQqlODOtrZxujTNKOmCct5U4cCGlbMsWxXlxtegOMbyMmHLzFMY4vSY1XHGpS6GpmbbEsmVjSCmia4bonyEeG0ab2Ytm8aKZvWjevZioy4XyiPhBVExLI7X4D8-XiOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624753708</pqid></control><display><type>article</type><title>Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses</title><source>IEEE Electronic Library (IEL)</source><creator>Ge, Baoyun ; Ludois, Daniel C.</creator><creatorcontrib>Ge, Baoyun ; Ludois, Daniel C.</creatorcontrib><description>The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2020.3018996</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Capacitance ; conductance ; Conformal mapping ; Coupling ; Design optimization ; Design parameters ; Electric fields ; Electrodes ; electrostatic machine ; Electrostatics ; Energy conversion ; Exact solutions ; Finite element method ; Power conversion ; Power transfer ; Rotating machinery ; Rotating machines ; Rotors ; separation of variables ; Stators</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2022-02, Vol.10 (1), p.61-73</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3c42c5ef394aba5e3a86ef756754e366218bc9f7b8f864fa122b93d23444b5be3</citedby><cites>FETCH-LOGICAL-c408t-3c42c5ef394aba5e3a86ef756754e366218bc9f7b8f864fa122b93d23444b5be3</cites><orcidid>0000-0001-6566-7293 ; 0000-0002-5807-5772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9174847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9174847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ge, Baoyun</creatorcontrib><creatorcontrib>Ludois, Daniel C.</creatorcontrib><title>Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h.</description><subject>Capacitance</subject><subject>conductance</subject><subject>Conformal mapping</subject><subject>Coupling</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>electrostatic machine</subject><subject>Electrostatics</subject><subject>Energy conversion</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Power conversion</subject><subject>Power transfer</subject><subject>Rotating machinery</subject><subject>Rotating machines</subject><subject>Rotors</subject><subject>separation of variables</subject><subject>Stators</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkdtO3DAQhqOKSiDKE3BjietdfIrtXK7CQltt1ZUK19HEO6ZGIQ62A9qX6bM2URBibuag-f6R5i-KS0bXjNHq-uf2z_1-u-aU07WgzFSV-lKccabMSmlTnnzUWp8WFyk90SkMLyttzop_mx66Y_YWOnKDGeOz7yH70JPgSA0DWJ-ht0igP5A69IfRLn0dxqHz_SP5BTl6i4m4EMkmJZ_yPM5_cRJM_vGzkn_F7rigeCD7DnqIZB_eMM7arxjTfHkzDBAhjwnTt-Krgy7hxXs-Lx5ut_f199Xu992PerNbWUlNXgkruS3RiUpCCyUKMAqdLpUuJQqlODOtrZxujTNKOmCct5U4cCGlbMsWxXlxtegOMbyMmHLzFMY4vSY1XHGpS6GpmbbEsmVjSCmia4bonyEeG0ab2Ytm8aKZvWjevZioy4XyiPhBVExLI7X4D8-XiOo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ge, Baoyun</creator><creator>Ludois, Daniel C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6566-7293</orcidid><orcidid>https://orcid.org/0000-0002-5807-5772</orcidid></search><sort><creationdate>20220201</creationdate><title>Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses</title><author>Ge, Baoyun ; Ludois, Daniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3c42c5ef394aba5e3a86ef756754e366218bc9f7b8f864fa122b93d23444b5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>conductance</topic><topic>Conformal mapping</topic><topic>Coupling</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>electrostatic machine</topic><topic>Electrostatics</topic><topic>Energy conversion</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Power conversion</topic><topic>Power transfer</topic><topic>Rotating machinery</topic><topic>Rotating machines</topic><topic>Rotors</topic><topic>separation of variables</topic><topic>Stators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Baoyun</creatorcontrib><creatorcontrib>Ludois, Daniel C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge, Baoyun</au><au>Ludois, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>61</spage><epage>73</epage><pages>61-73</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2020.3018996</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6566-7293</orcidid><orcidid>https://orcid.org/0000-0002-5807-5772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6777 |
ispartof | IEEE journal of emerging and selected topics in power electronics, 2022-02, Vol.10 (1), p.61-73 |
issn | 2168-6777 2168-6785 |
language | eng |
recordid | cdi_ieee_primary_9174847 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitance conductance Conformal mapping Coupling Design optimization Design parameters Electric fields Electrodes electrostatic machine Electrostatics Energy conversion Exact solutions Finite element method Power conversion Power transfer Rotating machinery Rotating machines Rotors separation of variables Stators |
title | Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Determination%20of%20Capacitance%20and%20Conductance%20Coupling%20Matrices%20for%20Assisting%20the%20Design%20of%20Capacitively%20Coupled%20Planar%20Power%20Conversion%20Apparatuses&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Ge,%20Baoyun&rft.date=2022-02-01&rft.volume=10&rft.issue=1&rft.spage=61&rft.epage=73&rft.pages=61-73&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2020.3018996&rft_dat=%3Cproquest_RIE%3E2624753708%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624753708&rft_id=info:pmid/&rft_ieee_id=9174847&rfr_iscdi=true |