Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses

The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2022-02, Vol.10 (1), p.61-73
Hauptverfasser: Ge, Baoyun, Ludois, Daniel C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 61
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 10
creator Ge, Baoyun
Ludois, Daniel C.
description The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h.
doi_str_mv 10.1109/JESTPE.2020.3018996
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9174847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9174847</ieee_id><sourcerecordid>2624753708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3c42c5ef394aba5e3a86ef756754e366218bc9f7b8f864fa122b93d23444b5be3</originalsourceid><addsrcrecordid>eNpNkdtO3DAQhqOKSiDKE3BjietdfIrtXK7CQltt1ZUK19HEO6ZGIQ62A9qX6bM2URBibuag-f6R5i-KS0bXjNHq-uf2z_1-u-aU07WgzFSV-lKccabMSmlTnnzUWp8WFyk90SkMLyttzop_mx66Y_YWOnKDGeOz7yH70JPgSA0DWJ-ht0igP5A69IfRLn0dxqHz_SP5BTl6i4m4EMkmJZ_yPM5_cRJM_vGzkn_F7rigeCD7DnqIZB_eMM7arxjTfHkzDBAhjwnTt-Krgy7hxXs-Lx5ut_f199Xu992PerNbWUlNXgkruS3RiUpCCyUKMAqdLpUuJQqlODOtrZxujTNKOmCct5U4cCGlbMsWxXlxtegOMbyMmHLzFMY4vSY1XHGpS6GpmbbEsmVjSCmia4bonyEeG0ab2Ytm8aKZvWjevZioy4XyiPhBVExLI7X4D8-XiOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624753708</pqid></control><display><type>article</type><title>Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses</title><source>IEEE Electronic Library (IEL)</source><creator>Ge, Baoyun ; Ludois, Daniel C.</creator><creatorcontrib>Ge, Baoyun ; Ludois, Daniel C.</creatorcontrib><description>The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2020.3018996</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Capacitance ; conductance ; Conformal mapping ; Coupling ; Design optimization ; Design parameters ; Electric fields ; Electrodes ; electrostatic machine ; Electrostatics ; Energy conversion ; Exact solutions ; Finite element method ; Power conversion ; Power transfer ; Rotating machinery ; Rotating machines ; Rotors ; separation of variables ; Stators</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2022-02, Vol.10 (1), p.61-73</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3c42c5ef394aba5e3a86ef756754e366218bc9f7b8f864fa122b93d23444b5be3</citedby><cites>FETCH-LOGICAL-c408t-3c42c5ef394aba5e3a86ef756754e366218bc9f7b8f864fa122b93d23444b5be3</cites><orcidid>0000-0001-6566-7293 ; 0000-0002-5807-5772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9174847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9174847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ge, Baoyun</creatorcontrib><creatorcontrib>Ludois, Daniel C.</creatorcontrib><title>Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h.</description><subject>Capacitance</subject><subject>conductance</subject><subject>Conformal mapping</subject><subject>Coupling</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>electrostatic machine</subject><subject>Electrostatics</subject><subject>Energy conversion</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Power conversion</subject><subject>Power transfer</subject><subject>Rotating machinery</subject><subject>Rotating machines</subject><subject>Rotors</subject><subject>separation of variables</subject><subject>Stators</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkdtO3DAQhqOKSiDKE3BjietdfIrtXK7CQltt1ZUK19HEO6ZGIQ62A9qX6bM2URBibuag-f6R5i-KS0bXjNHq-uf2z_1-u-aU07WgzFSV-lKccabMSmlTnnzUWp8WFyk90SkMLyttzop_mx66Y_YWOnKDGeOz7yH70JPgSA0DWJ-ht0igP5A69IfRLn0dxqHz_SP5BTl6i4m4EMkmJZ_yPM5_cRJM_vGzkn_F7rigeCD7DnqIZB_eMM7arxjTfHkzDBAhjwnTt-Krgy7hxXs-Lx5ut_f199Xu992PerNbWUlNXgkruS3RiUpCCyUKMAqdLpUuJQqlODOtrZxujTNKOmCct5U4cCGlbMsWxXlxtegOMbyMmHLzFMY4vSY1XHGpS6GpmbbEsmVjSCmia4bonyEeG0ab2Ytm8aKZvWjevZioy4XyiPhBVExLI7X4D8-XiOo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ge, Baoyun</creator><creator>Ludois, Daniel C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6566-7293</orcidid><orcidid>https://orcid.org/0000-0002-5807-5772</orcidid></search><sort><creationdate>20220201</creationdate><title>Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses</title><author>Ge, Baoyun ; Ludois, Daniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3c42c5ef394aba5e3a86ef756754e366218bc9f7b8f864fa122b93d23444b5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>conductance</topic><topic>Conformal mapping</topic><topic>Coupling</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>electrostatic machine</topic><topic>Electrostatics</topic><topic>Energy conversion</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Power conversion</topic><topic>Power transfer</topic><topic>Rotating machinery</topic><topic>Rotating machines</topic><topic>Rotors</topic><topic>separation of variables</topic><topic>Stators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Baoyun</creatorcontrib><creatorcontrib>Ludois, Daniel C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ge, Baoyun</au><au>Ludois, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>61</spage><epage>73</epage><pages>61-73</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>The emergence of higher performance capacitively coupled power conversion systems, for example, electrostatic rotating machines and capacitive power transfer, prompts the need for tools to assist the design and optimization process. Finite-element analysis (FEA) has been the default method to analyze these systems, due to the complexity of solving the electrostatic field in a multipotential-multimaterial structure. However, the variational and discretized nature of FEA introduces a bottleneck in the speed of the optimization process. This article presents an analytical approach that is capable of solving problems with nonzero electrode thickness and multiple materials, to evaluate the capacitance coupling matrix in planar power conversion apparatuses as an alternative to FEA. The duality between the electric displacement and the current fields allows this method to easily compute the conductance matrix as well, yielding effective loss models. When benchmarked against FEA for a synchronous electrostatic machine, this proposed analytical solution shows less than 2% relative error and takes merely 1 s to complete the computation for each set of design parameters, whereas the FEA takes 9 h.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2020.3018996</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6566-7293</orcidid><orcidid>https://orcid.org/0000-0002-5807-5772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2022-02, Vol.10 (1), p.61-73
issn 2168-6777
2168-6785
language eng
recordid cdi_ieee_primary_9174847
source IEEE Electronic Library (IEL)
subjects Capacitance
conductance
Conformal mapping
Coupling
Design optimization
Design parameters
Electric fields
Electrodes
electrostatic machine
Electrostatics
Energy conversion
Exact solutions
Finite element method
Power conversion
Power transfer
Rotating machinery
Rotating machines
Rotors
separation of variables
Stators
title Analytical Determination of Capacitance and Conductance Coupling Matrices for Assisting the Design of Capacitively Coupled Planar Power Conversion Apparatuses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Determination%20of%20Capacitance%20and%20Conductance%20Coupling%20Matrices%20for%20Assisting%20the%20Design%20of%20Capacitively%20Coupled%20Planar%20Power%20Conversion%20Apparatuses&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Ge,%20Baoyun&rft.date=2022-02-01&rft.volume=10&rft.issue=1&rft.spage=61&rft.epage=73&rft.pages=61-73&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2020.3018996&rft_dat=%3Cproquest_RIE%3E2624753708%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624753708&rft_id=info:pmid/&rft_ieee_id=9174847&rfr_iscdi=true