Collaborative Social Internet of Things in Mobile Edge Networks
Artificial intelligence (AI) on chips has recently driven the expansion of the Social Internet of Things (SIoT), where a group of SIoT devices with social relations can collaboratively identify and handle local events without the help of remote servers. On the other hand, mobile-edge computing (MEC)...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2020-12, Vol.7 (12), p.11473-11491 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11491 |
---|---|
container_issue | 12 |
container_start_page | 11473 |
container_title | IEEE internet of things journal |
container_volume | 7 |
creator | Wang, Chih-Hang Kuo, Jian-Jhih Yang, De-Nian Chen, Wen-Tsuen |
description | Artificial intelligence (AI) on chips has recently driven the expansion of the Social Internet of Things (SIoT), where a group of SIoT devices with social relations can collaboratively identify and handle local events without the help of remote servers. On the other hand, mobile-edge computing (MEC) is a favorable way to locally process SIoT data for reducing data transmission and computation among SIoT devices and backhaul networks. Nevertheless, the load sharing among SIoT devices, MEC, and remote servers brings about new challenges for the communication and computation tradeoff, cross-layer design in SIoT, and forwarding and aggregation tradeoff. To tackle these issues, we formulate a new optimization problem, namely, SIoT collaborative group and device selection problem (SCGDSP), and prove the NP-hardness. We first explore the intrinsic properties of a fundamental SCGDSP case by finding the optimal collaborative group for each user request. Then, we design an approximation algorithm for the general SCGDSP that first evaluates candidate collaborative groups under different social relations, and then selects the collaborative groups and SIoT devices properly. For scalability, the proposed algorithm also supports dynamic user requests and can be distributionally deployed in massive networks enabling collaborative MEC. Moreover, it also sustains local SIoT services, where the computation only involves SIoT devices and MEC servers. Simulation results demonstrate that effective SIoT and collaborative group selection (ESCGS) can reduce by more than 50% of the total communication and computation costs compared with baseline schemes in the real networks from topology zoo. Moreover, the distributed ESCGS reduces by 87% of the running time with total 16.5-MB message overhead, requiring no more than 0.05-ms transmission delay in a 100-Gb/s backbone network with eight MEC servers, 1000 SIoTs, and 800 monitored locations. |
doi_str_mv | 10.1109/JIOT.2020.3018304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9171854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9171854</ieee_id><sourcerecordid>2469477404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b79c9559fbba6b55501c7bdf81c13730963af780fc44a2aca2b4fc510b790a1f3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWGp_gHgJeN46-dpsTiKlakXtwXoOSZrUreumJlvFf--WFvE0c3hvBh5C5wTGhIC6epjNF2MKFMYMSMWAH6EBZVQWvCzp8b_9FI1yXgNArwmiygG6nsSmMTYm09VfHr9EV5sGz9rOp9Z3OAa8eKvbVcZ1i5-irRuPp8uVx8---47pPZ-hk2Ca7EeHOUSvt9PF5L54nN_NJjePhaOKdYWVyikhVLDWlFYIAcRJuwwVcYRJBqpkJsgKguPcUOMMtTw4QaAXwZDAhuhyf3eT4ufW506v4za1_UtNeam4lBx4T5E95VLMOfmgN6n-MOlHE9C7VHqXSu9S6UOq3rnYO7X3_o9XRJJKcPYLj0Jjig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469477404</pqid></control><display><type>article</type><title>Collaborative Social Internet of Things in Mobile Edge Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Chih-Hang ; Kuo, Jian-Jhih ; Yang, De-Nian ; Chen, Wen-Tsuen</creator><creatorcontrib>Wang, Chih-Hang ; Kuo, Jian-Jhih ; Yang, De-Nian ; Chen, Wen-Tsuen</creatorcontrib><description>Artificial intelligence (AI) on chips has recently driven the expansion of the Social Internet of Things (SIoT), where a group of SIoT devices with social relations can collaboratively identify and handle local events without the help of remote servers. On the other hand, mobile-edge computing (MEC) is a favorable way to locally process SIoT data for reducing data transmission and computation among SIoT devices and backhaul networks. Nevertheless, the load sharing among SIoT devices, MEC, and remote servers brings about new challenges for the communication and computation tradeoff, cross-layer design in SIoT, and forwarding and aggregation tradeoff. To tackle these issues, we formulate a new optimization problem, namely, SIoT collaborative group and device selection problem (SCGDSP), and prove the NP-hardness. We first explore the intrinsic properties of a fundamental SCGDSP case by finding the optimal collaborative group for each user request. Then, we design an approximation algorithm for the general SCGDSP that first evaluates candidate collaborative groups under different social relations, and then selects the collaborative groups and SIoT devices properly. For scalability, the proposed algorithm also supports dynamic user requests and can be distributionally deployed in massive networks enabling collaborative MEC. Moreover, it also sustains local SIoT services, where the computation only involves SIoT devices and MEC servers. Simulation results demonstrate that effective SIoT and collaborative group selection (ESCGS) can reduce by more than 50% of the total communication and computation costs compared with baseline schemes in the real networks from topology zoo. Moreover, the distributed ESCGS reduces by 87% of the running time with total 16.5-MB message overhead, requiring no more than 0.05-ms transmission delay in a 100-Gb/s backbone network with eight MEC servers, 1000 SIoTs, and 800 monitored locations.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2020.3018304</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation algorithm ; Artificial intelligence ; Collaboration ; Computer networks ; Data transmission ; Edge computing ; Electronic devices ; Internet of Things ; Load sharing ; Mobile computing ; mobile-edge computing (MEC) ; Monitoring ; NP-hard ; Optimization ; Servers ; Social Internet of Things (SIoT) ; Social networking (online) ; Topology ; Tradeoffs ; Wireless networks</subject><ispartof>IEEE internet of things journal, 2020-12, Vol.7 (12), p.11473-11491</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b79c9559fbba6b55501c7bdf81c13730963af780fc44a2aca2b4fc510b790a1f3</citedby><cites>FETCH-LOGICAL-c293t-b79c9559fbba6b55501c7bdf81c13730963af780fc44a2aca2b4fc510b790a1f3</cites><orcidid>0000-0002-3765-9293 ; 0000-0002-1051-5089 ; 0000-0002-7570-610X ; 0000-0003-0194-3871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9171854$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9171854$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Chih-Hang</creatorcontrib><creatorcontrib>Kuo, Jian-Jhih</creatorcontrib><creatorcontrib>Yang, De-Nian</creatorcontrib><creatorcontrib>Chen, Wen-Tsuen</creatorcontrib><title>Collaborative Social Internet of Things in Mobile Edge Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Artificial intelligence (AI) on chips has recently driven the expansion of the Social Internet of Things (SIoT), where a group of SIoT devices with social relations can collaboratively identify and handle local events without the help of remote servers. On the other hand, mobile-edge computing (MEC) is a favorable way to locally process SIoT data for reducing data transmission and computation among SIoT devices and backhaul networks. Nevertheless, the load sharing among SIoT devices, MEC, and remote servers brings about new challenges for the communication and computation tradeoff, cross-layer design in SIoT, and forwarding and aggregation tradeoff. To tackle these issues, we formulate a new optimization problem, namely, SIoT collaborative group and device selection problem (SCGDSP), and prove the NP-hardness. We first explore the intrinsic properties of a fundamental SCGDSP case by finding the optimal collaborative group for each user request. Then, we design an approximation algorithm for the general SCGDSP that first evaluates candidate collaborative groups under different social relations, and then selects the collaborative groups and SIoT devices properly. For scalability, the proposed algorithm also supports dynamic user requests and can be distributionally deployed in massive networks enabling collaborative MEC. Moreover, it also sustains local SIoT services, where the computation only involves SIoT devices and MEC servers. Simulation results demonstrate that effective SIoT and collaborative group selection (ESCGS) can reduce by more than 50% of the total communication and computation costs compared with baseline schemes in the real networks from topology zoo. Moreover, the distributed ESCGS reduces by 87% of the running time with total 16.5-MB message overhead, requiring no more than 0.05-ms transmission delay in a 100-Gb/s backbone network with eight MEC servers, 1000 SIoTs, and 800 monitored locations.</description><subject>Algorithms</subject><subject>Approximation algorithm</subject><subject>Artificial intelligence</subject><subject>Collaboration</subject><subject>Computer networks</subject><subject>Data transmission</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Internet of Things</subject><subject>Load sharing</subject><subject>Mobile computing</subject><subject>mobile-edge computing (MEC)</subject><subject>Monitoring</subject><subject>NP-hard</subject><subject>Optimization</subject><subject>Servers</subject><subject>Social Internet of Things (SIoT)</subject><subject>Social networking (online)</subject><subject>Topology</subject><subject>Tradeoffs</subject><subject>Wireless networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWGp_gHgJeN46-dpsTiKlakXtwXoOSZrUreumJlvFf--WFvE0c3hvBh5C5wTGhIC6epjNF2MKFMYMSMWAH6EBZVQWvCzp8b_9FI1yXgNArwmiygG6nsSmMTYm09VfHr9EV5sGz9rOp9Z3OAa8eKvbVcZ1i5-irRuPp8uVx8---47pPZ-hk2Ca7EeHOUSvt9PF5L54nN_NJjePhaOKdYWVyikhVLDWlFYIAcRJuwwVcYRJBqpkJsgKguPcUOMMtTw4QaAXwZDAhuhyf3eT4ufW506v4za1_UtNeam4lBx4T5E95VLMOfmgN6n-MOlHE9C7VHqXSu9S6UOq3rnYO7X3_o9XRJJKcPYLj0Jjig</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Wang, Chih-Hang</creator><creator>Kuo, Jian-Jhih</creator><creator>Yang, De-Nian</creator><creator>Chen, Wen-Tsuen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3765-9293</orcidid><orcidid>https://orcid.org/0000-0002-1051-5089</orcidid><orcidid>https://orcid.org/0000-0002-7570-610X</orcidid><orcidid>https://orcid.org/0000-0003-0194-3871</orcidid></search><sort><creationdate>20201201</creationdate><title>Collaborative Social Internet of Things in Mobile Edge Networks</title><author>Wang, Chih-Hang ; Kuo, Jian-Jhih ; Yang, De-Nian ; Chen, Wen-Tsuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b79c9559fbba6b55501c7bdf81c13730963af780fc44a2aca2b4fc510b790a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation algorithm</topic><topic>Artificial intelligence</topic><topic>Collaboration</topic><topic>Computer networks</topic><topic>Data transmission</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Internet of Things</topic><topic>Load sharing</topic><topic>Mobile computing</topic><topic>mobile-edge computing (MEC)</topic><topic>Monitoring</topic><topic>NP-hard</topic><topic>Optimization</topic><topic>Servers</topic><topic>Social Internet of Things (SIoT)</topic><topic>Social networking (online)</topic><topic>Topology</topic><topic>Tradeoffs</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chih-Hang</creatorcontrib><creatorcontrib>Kuo, Jian-Jhih</creatorcontrib><creatorcontrib>Yang, De-Nian</creatorcontrib><creatorcontrib>Chen, Wen-Tsuen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chih-Hang</au><au>Kuo, Jian-Jhih</au><au>Yang, De-Nian</au><au>Chen, Wen-Tsuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Social Internet of Things in Mobile Edge Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>7</volume><issue>12</issue><spage>11473</spage><epage>11491</epage><pages>11473-11491</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Artificial intelligence (AI) on chips has recently driven the expansion of the Social Internet of Things (SIoT), where a group of SIoT devices with social relations can collaboratively identify and handle local events without the help of remote servers. On the other hand, mobile-edge computing (MEC) is a favorable way to locally process SIoT data for reducing data transmission and computation among SIoT devices and backhaul networks. Nevertheless, the load sharing among SIoT devices, MEC, and remote servers brings about new challenges for the communication and computation tradeoff, cross-layer design in SIoT, and forwarding and aggregation tradeoff. To tackle these issues, we formulate a new optimization problem, namely, SIoT collaborative group and device selection problem (SCGDSP), and prove the NP-hardness. We first explore the intrinsic properties of a fundamental SCGDSP case by finding the optimal collaborative group for each user request. Then, we design an approximation algorithm for the general SCGDSP that first evaluates candidate collaborative groups under different social relations, and then selects the collaborative groups and SIoT devices properly. For scalability, the proposed algorithm also supports dynamic user requests and can be distributionally deployed in massive networks enabling collaborative MEC. Moreover, it also sustains local SIoT services, where the computation only involves SIoT devices and MEC servers. Simulation results demonstrate that effective SIoT and collaborative group selection (ESCGS) can reduce by more than 50% of the total communication and computation costs compared with baseline schemes in the real networks from topology zoo. Moreover, the distributed ESCGS reduces by 87% of the running time with total 16.5-MB message overhead, requiring no more than 0.05-ms transmission delay in a 100-Gb/s backbone network with eight MEC servers, 1000 SIoTs, and 800 monitored locations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2020.3018304</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3765-9293</orcidid><orcidid>https://orcid.org/0000-0002-1051-5089</orcidid><orcidid>https://orcid.org/0000-0002-7570-610X</orcidid><orcidid>https://orcid.org/0000-0003-0194-3871</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2020-12, Vol.7 (12), p.11473-11491 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_9171854 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation algorithm Artificial intelligence Collaboration Computer networks Data transmission Edge computing Electronic devices Internet of Things Load sharing Mobile computing mobile-edge computing (MEC) Monitoring NP-hard Optimization Servers Social Internet of Things (SIoT) Social networking (online) Topology Tradeoffs Wireless networks |
title | Collaborative Social Internet of Things in Mobile Edge Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Social%20Internet%20of%20Things%20in%20Mobile%20Edge%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Wang,%20Chih-Hang&rft.date=2020-12-01&rft.volume=7&rft.issue=12&rft.spage=11473&rft.epage=11491&rft.pages=11473-11491&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2020.3018304&rft_dat=%3Cproquest_RIE%3E2469477404%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469477404&rft_id=info:pmid/&rft_ieee_id=9171854&rfr_iscdi=true |