Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation

Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.153364-153384
Hauptverfasser: Muthusamy, Rajkumar, Huang, Xiaoqian, Zweiri, Yahya, Seneviratne, Lakmal, Gan, Dongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153384
container_issue
container_start_page 153364
container_title IEEE access
container_volume 8
creator Muthusamy, Rajkumar
Huang, Xiaoqian
Zweiri, Yahya
Seneviratne, Lakmal
Gan, Dongming
description Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise and object feature events in real-time to improve slip detection and suppression. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. For a class of objects, results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt = 500μs) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.
doi_str_mv 10.1109/ACCESS.2020.3017738
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9171323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9171323</ieee_id><doaj_id>oai_doaj_org_article_8cbeb802a79b4e80bb55d74ed6cb7533</doaj_id><sourcerecordid>2454643456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-66577632256afcbfad865244c6d7e99c76c6eb10f1964121963dbed2efee09a13</originalsourceid><addsrcrecordid>eNpNkV1LwzAYhYsoONRf4E3B6858p73UOefAD3B6J4QkfasZW1OTVvDfm60i5iIfh_OcvHCy7ByjKcaouryazear1ZQggqYUYSlpeZBNCBZVQTkVh__ux9lZjGuUVpkkLifZ2yMMwW996D6czedf0PbFtY5Q56uN6_Ib6MH2zre5bpM0dF2AGHdv1-bP3vg-UYugY-fa973nQbeuGzZ6B51mR43eRDj7PU-y19v5y-yuuH9aLGdX94VlqOwLIbiUghLChW6saXRdCk4Ys6KWUFVWCivAYNTgSjBM0k5rAzWBBgBVGtOTbDnm1l6vVRfcVodv5bVTe8GHd6VDmnQDqrQGTImIlpVhUCJjOK8lg1pYIzmlKetizOqC_xwg9mrth9Cm8RVhnAlGGRfJRUeXDT7GAM3frxipXStqbEXtWlG_rSTqfKQcAPwRFZaYEkp_ACI9iNc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643456</pqid></control><display><type>article</type><title>Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Muthusamy, Rajkumar ; Huang, Xiaoqian ; Zweiri, Yahya ; Seneviratne, Lakmal ; Gan, Dongming</creator><creatorcontrib>Muthusamy, Rajkumar ; Huang, Xiaoqian ; Zweiri, Yahya ; Seneviratne, Lakmal ; Gan, Dongming</creatorcontrib><description>Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise and object feature events in real-time to improve slip detection and suppression. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. For a class of objects, results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt = 500μs) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3017738</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dynamic vision sensor ; event camera ; Feature extraction ; fuzzy control ; Grasping ; Grasping (robotics) ; Grip force ; Neuromorphics ; object manipulation ; Object recognition ; Performance evaluation ; Robot sensing systems ; robotic grasping ; Slip ; slip detection ; slip suppression ; Task analysis ; Uncertainty ; vision based tactile sensing</subject><ispartof>IEEE access, 2020, Vol.8, p.153364-153384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-66577632256afcbfad865244c6d7e99c76c6eb10f1964121963dbed2efee09a13</citedby><cites>FETCH-LOGICAL-c408t-66577632256afcbfad865244c6d7e99c76c6eb10f1964121963dbed2efee09a13</cites><orcidid>0000-0001-5327-1902 ; 0000-0002-5372-0154 ; 0000-0001-6405-8402 ; 0000-0002-2782-9068 ; 0000-0003-4331-7254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9171323$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Muthusamy, Rajkumar</creatorcontrib><creatorcontrib>Huang, Xiaoqian</creatorcontrib><creatorcontrib>Zweiri, Yahya</creatorcontrib><creatorcontrib>Seneviratne, Lakmal</creatorcontrib><creatorcontrib>Gan, Dongming</creatorcontrib><title>Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise and object feature events in real-time to improve slip detection and suppression. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. For a class of objects, results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt = 500μs) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.</description><subject>Dynamic vision sensor</subject><subject>event camera</subject><subject>Feature extraction</subject><subject>fuzzy control</subject><subject>Grasping</subject><subject>Grasping (robotics)</subject><subject>Grip force</subject><subject>Neuromorphics</subject><subject>object manipulation</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Robot sensing systems</subject><subject>robotic grasping</subject><subject>Slip</subject><subject>slip detection</subject><subject>slip suppression</subject><subject>Task analysis</subject><subject>Uncertainty</subject><subject>vision based tactile sensing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1LwzAYhYsoONRf4E3B6858p73UOefAD3B6J4QkfasZW1OTVvDfm60i5iIfh_OcvHCy7ByjKcaouryazear1ZQggqYUYSlpeZBNCBZVQTkVh__ux9lZjGuUVpkkLifZ2yMMwW996D6czedf0PbFtY5Q56uN6_Ib6MH2zre5bpM0dF2AGHdv1-bP3vg-UYugY-fa973nQbeuGzZ6B51mR43eRDj7PU-y19v5y-yuuH9aLGdX94VlqOwLIbiUghLChW6saXRdCk4Ys6KWUFVWCivAYNTgSjBM0k5rAzWBBgBVGtOTbDnm1l6vVRfcVodv5bVTe8GHd6VDmnQDqrQGTImIlpVhUCJjOK8lg1pYIzmlKetizOqC_xwg9mrth9Cm8RVhnAlGGRfJRUeXDT7GAM3frxipXStqbEXtWlG_rSTqfKQcAPwRFZaYEkp_ACI9iNc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Muthusamy, Rajkumar</creator><creator>Huang, Xiaoqian</creator><creator>Zweiri, Yahya</creator><creator>Seneviratne, Lakmal</creator><creator>Gan, Dongming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5327-1902</orcidid><orcidid>https://orcid.org/0000-0002-5372-0154</orcidid><orcidid>https://orcid.org/0000-0001-6405-8402</orcidid><orcidid>https://orcid.org/0000-0002-2782-9068</orcidid><orcidid>https://orcid.org/0000-0003-4331-7254</orcidid></search><sort><creationdate>2020</creationdate><title>Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation</title><author>Muthusamy, Rajkumar ; Huang, Xiaoqian ; Zweiri, Yahya ; Seneviratne, Lakmal ; Gan, Dongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-66577632256afcbfad865244c6d7e99c76c6eb10f1964121963dbed2efee09a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dynamic vision sensor</topic><topic>event camera</topic><topic>Feature extraction</topic><topic>fuzzy control</topic><topic>Grasping</topic><topic>Grasping (robotics)</topic><topic>Grip force</topic><topic>Neuromorphics</topic><topic>object manipulation</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Robot sensing systems</topic><topic>robotic grasping</topic><topic>Slip</topic><topic>slip detection</topic><topic>slip suppression</topic><topic>Task analysis</topic><topic>Uncertainty</topic><topic>vision based tactile sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthusamy, Rajkumar</creatorcontrib><creatorcontrib>Huang, Xiaoqian</creatorcontrib><creatorcontrib>Zweiri, Yahya</creatorcontrib><creatorcontrib>Seneviratne, Lakmal</creatorcontrib><creatorcontrib>Gan, Dongming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthusamy, Rajkumar</au><au>Huang, Xiaoqian</au><au>Zweiri, Yahya</au><au>Seneviratne, Lakmal</au><au>Gan, Dongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>153364</spage><epage>153384</epage><pages>153364-153384</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise and object feature events in real-time to improve slip detection and suppression. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. For a class of objects, results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt = 500μs) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3017738</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5327-1902</orcidid><orcidid>https://orcid.org/0000-0002-5372-0154</orcidid><orcidid>https://orcid.org/0000-0001-6405-8402</orcidid><orcidid>https://orcid.org/0000-0002-2782-9068</orcidid><orcidid>https://orcid.org/0000-0003-4331-7254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.153364-153384
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9171323
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Dynamic vision sensor
event camera
Feature extraction
fuzzy control
Grasping
Grasping (robotics)
Grip force
Neuromorphics
object manipulation
Object recognition
Performance evaluation
Robot sensing systems
robotic grasping
Slip
slip detection
slip suppression
Task analysis
Uncertainty
vision based tactile sensing
title Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromorphic%20Event-Based%20Slip%20Detection%20and%20Suppression%20in%20Robotic%20Grasping%20and%20Manipulation&rft.jtitle=IEEE%20access&rft.au=Muthusamy,%20Rajkumar&rft.date=2020&rft.volume=8&rft.spage=153364&rft.epage=153384&rft.pages=153364-153384&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3017738&rft_dat=%3Cproquest_ieee_%3E2454643456%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643456&rft_id=info:pmid/&rft_ieee_id=9171323&rft_doaj_id=oai_doaj_org_article_8cbeb802a79b4e80bb55d74ed6cb7533&rfr_iscdi=true