Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation
Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibratio...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.153364-153384 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153384 |
---|---|
container_issue | |
container_start_page | 153364 |
container_title | IEEE access |
container_volume | 8 |
creator | Muthusamy, Rajkumar Huang, Xiaoqian Zweiri, Yahya Seneviratne, Lakmal Gan, Dongming |
description | Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise and object feature events in real-time to improve slip detection and suppression. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. For a class of objects, results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt = 500μs) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services. |
doi_str_mv | 10.1109/ACCESS.2020.3017738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9171323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9171323</ieee_id><doaj_id>oai_doaj_org_article_8cbeb802a79b4e80bb55d74ed6cb7533</doaj_id><sourcerecordid>2454643456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-66577632256afcbfad865244c6d7e99c76c6eb10f1964121963dbed2efee09a13</originalsourceid><addsrcrecordid>eNpNkV1LwzAYhYsoONRf4E3B6858p73UOefAD3B6J4QkfasZW1OTVvDfm60i5iIfh_OcvHCy7ByjKcaouryazear1ZQggqYUYSlpeZBNCBZVQTkVh__ux9lZjGuUVpkkLifZ2yMMwW996D6czedf0PbFtY5Q56uN6_Ib6MH2zre5bpM0dF2AGHdv1-bP3vg-UYugY-fa973nQbeuGzZ6B51mR43eRDj7PU-y19v5y-yuuH9aLGdX94VlqOwLIbiUghLChW6saXRdCk4Ys6KWUFVWCivAYNTgSjBM0k5rAzWBBgBVGtOTbDnm1l6vVRfcVodv5bVTe8GHd6VDmnQDqrQGTImIlpVhUCJjOK8lg1pYIzmlKetizOqC_xwg9mrth9Cm8RVhnAlGGRfJRUeXDT7GAM3frxipXStqbEXtWlG_rSTqfKQcAPwRFZaYEkp_ACI9iNc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643456</pqid></control><display><type>article</type><title>Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Muthusamy, Rajkumar ; Huang, Xiaoqian ; Zweiri, Yahya ; Seneviratne, Lakmal ; Gan, Dongming</creator><creatorcontrib>Muthusamy, Rajkumar ; Huang, Xiaoqian ; Zweiri, Yahya ; Seneviratne, Lakmal ; Gan, Dongming</creatorcontrib><description>Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise and object feature events in real-time to improve slip detection and suppression. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. For a class of objects, results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt = 500μs) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3017738</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dynamic vision sensor ; event camera ; Feature extraction ; fuzzy control ; Grasping ; Grasping (robotics) ; Grip force ; Neuromorphics ; object manipulation ; Object recognition ; Performance evaluation ; Robot sensing systems ; robotic grasping ; Slip ; slip detection ; slip suppression ; Task analysis ; Uncertainty ; vision based tactile sensing</subject><ispartof>IEEE access, 2020, Vol.8, p.153364-153384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-66577632256afcbfad865244c6d7e99c76c6eb10f1964121963dbed2efee09a13</citedby><cites>FETCH-LOGICAL-c408t-66577632256afcbfad865244c6d7e99c76c6eb10f1964121963dbed2efee09a13</cites><orcidid>0000-0001-5327-1902 ; 0000-0002-5372-0154 ; 0000-0001-6405-8402 ; 0000-0002-2782-9068 ; 0000-0003-4331-7254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9171323$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Muthusamy, Rajkumar</creatorcontrib><creatorcontrib>Huang, Xiaoqian</creatorcontrib><creatorcontrib>Zweiri, Yahya</creatorcontrib><creatorcontrib>Seneviratne, Lakmal</creatorcontrib><creatorcontrib>Gan, Dongming</creatorcontrib><title>Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise and object feature events in real-time to improve slip detection and suppression. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. For a class of objects, results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt = 500μs) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.</description><subject>Dynamic vision sensor</subject><subject>event camera</subject><subject>Feature extraction</subject><subject>fuzzy control</subject><subject>Grasping</subject><subject>Grasping (robotics)</subject><subject>Grip force</subject><subject>Neuromorphics</subject><subject>object manipulation</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Robot sensing systems</subject><subject>robotic grasping</subject><subject>Slip</subject><subject>slip detection</subject><subject>slip suppression</subject><subject>Task analysis</subject><subject>Uncertainty</subject><subject>vision based tactile sensing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1LwzAYhYsoONRf4E3B6858p73UOefAD3B6J4QkfasZW1OTVvDfm60i5iIfh_OcvHCy7ByjKcaouryazear1ZQggqYUYSlpeZBNCBZVQTkVh__ux9lZjGuUVpkkLifZ2yMMwW996D6czedf0PbFtY5Q56uN6_Ib6MH2zre5bpM0dF2AGHdv1-bP3vg-UYugY-fa973nQbeuGzZ6B51mR43eRDj7PU-y19v5y-yuuH9aLGdX94VlqOwLIbiUghLChW6saXRdCk4Ys6KWUFVWCivAYNTgSjBM0k5rAzWBBgBVGtOTbDnm1l6vVRfcVodv5bVTe8GHd6VDmnQDqrQGTImIlpVhUCJjOK8lg1pYIzmlKetizOqC_xwg9mrth9Cm8RVhnAlGGRfJRUeXDT7GAM3frxipXStqbEXtWlG_rSTqfKQcAPwRFZaYEkp_ACI9iNc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Muthusamy, Rajkumar</creator><creator>Huang, Xiaoqian</creator><creator>Zweiri, Yahya</creator><creator>Seneviratne, Lakmal</creator><creator>Gan, Dongming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5327-1902</orcidid><orcidid>https://orcid.org/0000-0002-5372-0154</orcidid><orcidid>https://orcid.org/0000-0001-6405-8402</orcidid><orcidid>https://orcid.org/0000-0002-2782-9068</orcidid><orcidid>https://orcid.org/0000-0003-4331-7254</orcidid></search><sort><creationdate>2020</creationdate><title>Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation</title><author>Muthusamy, Rajkumar ; Huang, Xiaoqian ; Zweiri, Yahya ; Seneviratne, Lakmal ; Gan, Dongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-66577632256afcbfad865244c6d7e99c76c6eb10f1964121963dbed2efee09a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dynamic vision sensor</topic><topic>event camera</topic><topic>Feature extraction</topic><topic>fuzzy control</topic><topic>Grasping</topic><topic>Grasping (robotics)</topic><topic>Grip force</topic><topic>Neuromorphics</topic><topic>object manipulation</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Robot sensing systems</topic><topic>robotic grasping</topic><topic>Slip</topic><topic>slip detection</topic><topic>slip suppression</topic><topic>Task analysis</topic><topic>Uncertainty</topic><topic>vision based tactile sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthusamy, Rajkumar</creatorcontrib><creatorcontrib>Huang, Xiaoqian</creatorcontrib><creatorcontrib>Zweiri, Yahya</creatorcontrib><creatorcontrib>Seneviratne, Lakmal</creatorcontrib><creatorcontrib>Gan, Dongming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthusamy, Rajkumar</au><au>Huang, Xiaoqian</au><au>Zweiri, Yahya</au><au>Seneviratne, Lakmal</au><au>Gan, Dongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>153364</spage><epage>153384</epage><pages>153364-153384</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise and object feature events in real-time to improve slip detection and suppression. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. For a class of objects, results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt = 500μs) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3017738</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5327-1902</orcidid><orcidid>https://orcid.org/0000-0002-5372-0154</orcidid><orcidid>https://orcid.org/0000-0001-6405-8402</orcidid><orcidid>https://orcid.org/0000-0002-2782-9068</orcidid><orcidid>https://orcid.org/0000-0003-4331-7254</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.153364-153384 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9171323 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Dynamic vision sensor event camera Feature extraction fuzzy control Grasping Grasping (robotics) Grip force Neuromorphics object manipulation Object recognition Performance evaluation Robot sensing systems robotic grasping Slip slip detection slip suppression Task analysis Uncertainty vision based tactile sensing |
title | Neuromorphic Event-Based Slip Detection and Suppression in Robotic Grasping and Manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromorphic%20Event-Based%20Slip%20Detection%20and%20Suppression%20in%20Robotic%20Grasping%20and%20Manipulation&rft.jtitle=IEEE%20access&rft.au=Muthusamy,%20Rajkumar&rft.date=2020&rft.volume=8&rft.spage=153364&rft.epage=153384&rft.pages=153364-153384&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3017738&rft_dat=%3Cproquest_ieee_%3E2454643456%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643456&rft_id=info:pmid/&rft_ieee_id=9171323&rft_doaj_id=oai_doaj_org_article_8cbeb802a79b4e80bb55d74ed6cb7533&rfr_iscdi=true |