An Adaptive Detail Equalization for Infrared Image Enhancement Based on Multi-scale Convolution

In order to solve the problem of low contrast and fuzzy detail in infrared image, we propose an infrared image enhancement method based on multi-scale and adaptive bi-interval histogram equalization with details. The whole image enhancement method mainly consists of four parts: details enhancement,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Lu, Haoxiang, Liu, Zhengbing, Pan, Xipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Lu, Haoxiang
Liu, Zhengbing
Pan, Xipeng
description In order to solve the problem of low contrast and fuzzy detail in infrared image, we propose an infrared image enhancement method based on multi-scale and adaptive bi-interval histogram equalization with details. The whole image enhancement method mainly consists of four parts: details enhancement, contrast stretch, edge enhancement and reconstruction of enhancement images. Firstly, the multi-scale convolution is used to enhance the details of image; Secondly, taking maximize the variance between classes and minimize the variance as fitness function and solved the threshold of the infrared image by genetic algorithm, then dividing the infrared image into two sub-intervals according to the threshold. After that, the bi-interval histogram equalization with details is applied to enhance the global contrast, at the same time, using the mean square deviation and average gray equalization to improve the brightness of the image. Finally, the enhanced image by adaptive bi-interval histogram equalization with details and the image processed by adaptive limited Laplace operator are fused by linear weighting to reconstruct the final enhancement image. The experimental results show that the proposed method can outperform state-of-the-art ones in both qualitative and quantitative comparisons.
doi_str_mv 10.1109/ACCESS.2020.3017499
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9170597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9170597</ieee_id><doaj_id>oai_doaj_org_article_bc0af97c13694d64ab5a13bf00faba97</doaj_id><sourcerecordid>2454645414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-707fa51fad0882f16c482cc6f6762d94e4cf36d59f0883f154683243dd2cf5653</originalsourceid><addsrcrecordid>eNpNUctKxDAULaKgqF_gJuC6Y95tlmMddWDEhboOd_LQDJ1mTFtBv96MFTFwSTj3PAKnKC4InhGC1dW8aRZPTzOKKZ4xTCqu1EFxQolUJRNMHv57Hxfnfb_B-dQZEtVJoecdmlvYDeHDoRs3QGjR4n2ENnzBEGKHfExo2fkEyVm03MKrQ4vuDTrjtq4b0DX0Gc-8h7EdQtkbaB1qYvcR23GvPyuOPLS9O_-9T4uX28Vzc1-uHu-WzXxVGo7roaxw5UEQDxbXNfVEGl5TY6SXlaRWcceNZ9IK5fOeeSK4rBnlzFpqvJCCnRbLyddG2OhdCltInzpC0D9ATK8a0hBM6_TaYPCqMoRJxa3ksBZA2Npj7GENqspel5PXLsX30fWD3sQxdfn7mvKcnIfwzGITy6TY98n5v1SC9b4YPRWj98Xo32Ky6mJSBefcn0KRCouc_A3Esoj4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454645414</pqid></control><display><type>article</type><title>An Adaptive Detail Equalization for Infrared Image Enhancement Based on Multi-scale Convolution</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lu, Haoxiang ; Liu, Zhengbing ; Pan, Xipeng</creator><creatorcontrib>Lu, Haoxiang ; Liu, Zhengbing ; Pan, Xipeng</creatorcontrib><description>In order to solve the problem of low contrast and fuzzy detail in infrared image, we propose an infrared image enhancement method based on multi-scale and adaptive bi-interval histogram equalization with details. The whole image enhancement method mainly consists of four parts: details enhancement, contrast stretch, edge enhancement and reconstruction of enhancement images. Firstly, the multi-scale convolution is used to enhance the details of image; Secondly, taking maximize the variance between classes and minimize the variance as fitness function and solved the threshold of the infrared image by genetic algorithm, then dividing the infrared image into two sub-intervals according to the threshold. After that, the bi-interval histogram equalization with details is applied to enhance the global contrast, at the same time, using the mean square deviation and average gray equalization to improve the brightness of the image. Finally, the enhanced image by adaptive bi-interval histogram equalization with details and the image processed by adaptive limited Laplace operator are fused by linear weighting to reconstruct the final enhancement image. The experimental results show that the proposed method can outperform state-of-the-art ones in both qualitative and quantitative comparisons.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3017499</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Contrast enhancement ; Convolution ; Detail sharpening ; Equalization ; Genetic algorithms ; Histograms ; Image contrast ; Image enhancement ; Image reconstruction ; Infrared image ; Infrared imagery ; Multiscale convolution ; Variance</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-707fa51fad0882f16c482cc6f6762d94e4cf36d59f0883f154683243dd2cf5653</citedby><cites>FETCH-LOGICAL-c408t-707fa51fad0882f16c482cc6f6762d94e4cf36d59f0883f154683243dd2cf5653</cites><orcidid>0000-0003-2284-5154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9170597$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Lu, Haoxiang</creatorcontrib><creatorcontrib>Liu, Zhengbing</creatorcontrib><creatorcontrib>Pan, Xipeng</creatorcontrib><title>An Adaptive Detail Equalization for Infrared Image Enhancement Based on Multi-scale Convolution</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to solve the problem of low contrast and fuzzy detail in infrared image, we propose an infrared image enhancement method based on multi-scale and adaptive bi-interval histogram equalization with details. The whole image enhancement method mainly consists of four parts: details enhancement, contrast stretch, edge enhancement and reconstruction of enhancement images. Firstly, the multi-scale convolution is used to enhance the details of image; Secondly, taking maximize the variance between classes and minimize the variance as fitness function and solved the threshold of the infrared image by genetic algorithm, then dividing the infrared image into two sub-intervals according to the threshold. After that, the bi-interval histogram equalization with details is applied to enhance the global contrast, at the same time, using the mean square deviation and average gray equalization to improve the brightness of the image. Finally, the enhanced image by adaptive bi-interval histogram equalization with details and the image processed by adaptive limited Laplace operator are fused by linear weighting to reconstruct the final enhancement image. The experimental results show that the proposed method can outperform state-of-the-art ones in both qualitative and quantitative comparisons.</description><subject>Contrast enhancement</subject><subject>Convolution</subject><subject>Detail sharpening</subject><subject>Equalization</subject><subject>Genetic algorithms</subject><subject>Histograms</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image reconstruction</subject><subject>Infrared image</subject><subject>Infrared imagery</subject><subject>Multiscale convolution</subject><subject>Variance</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKxDAULaKgqF_gJuC6Y95tlmMddWDEhboOd_LQDJ1mTFtBv96MFTFwSTj3PAKnKC4InhGC1dW8aRZPTzOKKZ4xTCqu1EFxQolUJRNMHv57Hxfnfb_B-dQZEtVJoecdmlvYDeHDoRs3QGjR4n2ENnzBEGKHfExo2fkEyVm03MKrQ4vuDTrjtq4b0DX0Gc-8h7EdQtkbaB1qYvcR23GvPyuOPLS9O_-9T4uX28Vzc1-uHu-WzXxVGo7roaxw5UEQDxbXNfVEGl5TY6SXlaRWcceNZ9IK5fOeeSK4rBnlzFpqvJCCnRbLyddG2OhdCltInzpC0D9ATK8a0hBM6_TaYPCqMoRJxa3ksBZA2Npj7GENqspel5PXLsX30fWD3sQxdfn7mvKcnIfwzGITy6TY98n5v1SC9b4YPRWj98Xo32Ky6mJSBefcn0KRCouc_A3Esoj4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lu, Haoxiang</creator><creator>Liu, Zhengbing</creator><creator>Pan, Xipeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2284-5154</orcidid></search><sort><creationdate>20200101</creationdate><title>An Adaptive Detail Equalization for Infrared Image Enhancement Based on Multi-scale Convolution</title><author>Lu, Haoxiang ; Liu, Zhengbing ; Pan, Xipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-707fa51fad0882f16c482cc6f6762d94e4cf36d59f0883f154683243dd2cf5653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Contrast enhancement</topic><topic>Convolution</topic><topic>Detail sharpening</topic><topic>Equalization</topic><topic>Genetic algorithms</topic><topic>Histograms</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image reconstruction</topic><topic>Infrared image</topic><topic>Infrared imagery</topic><topic>Multiscale convolution</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Haoxiang</creatorcontrib><creatorcontrib>Liu, Zhengbing</creatorcontrib><creatorcontrib>Pan, Xipeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Haoxiang</au><au>Liu, Zhengbing</au><au>Pan, Xipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Detail Equalization for Infrared Image Enhancement Based on Multi-scale Convolution</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to solve the problem of low contrast and fuzzy detail in infrared image, we propose an infrared image enhancement method based on multi-scale and adaptive bi-interval histogram equalization with details. The whole image enhancement method mainly consists of four parts: details enhancement, contrast stretch, edge enhancement and reconstruction of enhancement images. Firstly, the multi-scale convolution is used to enhance the details of image; Secondly, taking maximize the variance between classes and minimize the variance as fitness function and solved the threshold of the infrared image by genetic algorithm, then dividing the infrared image into two sub-intervals according to the threshold. After that, the bi-interval histogram equalization with details is applied to enhance the global contrast, at the same time, using the mean square deviation and average gray equalization to improve the brightness of the image. Finally, the enhanced image by adaptive bi-interval histogram equalization with details and the image processed by adaptive limited Laplace operator are fused by linear weighting to reconstruct the final enhancement image. The experimental results show that the proposed method can outperform state-of-the-art ones in both qualitative and quantitative comparisons.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3017499</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2284-5154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9170597
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Contrast enhancement
Convolution
Detail sharpening
Equalization
Genetic algorithms
Histograms
Image contrast
Image enhancement
Image reconstruction
Infrared image
Infrared imagery
Multiscale convolution
Variance
title An Adaptive Detail Equalization for Infrared Image Enhancement Based on Multi-scale Convolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Detail%20Equalization%20for%20Infrared%20Image%20Enhancement%20Based%20on%20Multi-scale%20Convolution&rft.jtitle=IEEE%20access&rft.au=Lu,%20Haoxiang&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3017499&rft_dat=%3Cproquest_ieee_%3E2454645414%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454645414&rft_id=info:pmid/&rft_ieee_id=9170597&rft_doaj_id=oai_doaj_org_article_bc0af97c13694d64ab5a13bf00faba97&rfr_iscdi=true