Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems
Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-07, Vol.21 (14), p.15564-15573 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15573 |
---|---|
container_issue | 14 |
container_start_page | 15564 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Manogaran, Gunasekaran Balasubramanian, Venki Rawal, Bharat S. Saravanan, Vijayalakshmi Montenegro-Marin, Carlos Enrique Ramachandran, Varatharajan Kumar, Priyan Malarvizhi |
description | Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion process provides accurate and stable data required for the applications in a recurrent manner. In order to enhance the data fusion of connected vehicles, this article introduces multi-variate data fusion (MVDF) technique. This technique is competent in handling asynchronous and discrete data from the environment and streamlining them into continuous and delay-less inputs for the applications. The process of data fusion is aided through least square regression learning to determine the errors in different time instances. The indefinite and definite data fusion instances are differentiated using this regression model to identify the errors in fore-hand. Besides, the differentiation relies on the application run-time interval to progress data fusion within the same or extended time instance and data slots. In this manner the differentiation along with the error identification is regular until the application required data is met. The performance of this technique is verified using network simulator experiments for the metrics error, data utilization ratio, and computation time. The results show that this technique improves data utilization under controlled time and fewer errors. |
doi_str_mv | 10.1109/JSEN.2020.3017384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9169903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9169903</ieee_id><sourcerecordid>2552162573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-af5d55258e4a683bc4e7114019820fb749fea673520d5796aaa335010ace1273</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP03TPMrcdDIVXBHfQtbezowunUn6sG9vy4ZP914459zDD6FbSiaUEvXwupq9TxhhZMIJlTxPz9CICpEnVKb5-bBzkqRcfl-iqxC2hFAlhRyh6q1rok2-jLcmAn4y0eB5F2zrcAHlj7O_HeC69fgTqq60boNX4EJ_z7xvfcDW4YWL0DR2Ay7iwhsX9q2PJg4Rq0OIsAvX6KI2TYCb0xyjYj4rpi_J8uN5MX1cJiVTPCamFpUQTOSQmizn6zIFSWnaV80ZqdcyVTWYTHLBSCWkyowxnAtCiSmBMsnH6P4Yu_dtXztEvW077_qPmvW5NGNC8l5Fj6rStyF4qPXe253xB02JHljqgaUeWOoTy95zd_RYAPjXK5opRTj_A9xtcF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552162573</pqid></control><display><type>article</type><title>Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Manogaran, Gunasekaran ; Balasubramanian, Venki ; Rawal, Bharat S. ; Saravanan, Vijayalakshmi ; Montenegro-Marin, Carlos Enrique ; Ramachandran, Varatharajan ; Kumar, Priyan Malarvizhi</creator><creatorcontrib>Manogaran, Gunasekaran ; Balasubramanian, Venki ; Rawal, Bharat S. ; Saravanan, Vijayalakshmi ; Montenegro-Marin, Carlos Enrique ; Ramachandran, Varatharajan ; Kumar, Priyan Malarvizhi</creatorcontrib><description>Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion process provides accurate and stable data required for the applications in a recurrent manner. In order to enhance the data fusion of connected vehicles, this article introduces multi-variate data fusion (MVDF) technique. This technique is competent in handling asynchronous and discrete data from the environment and streamlining them into continuous and delay-less inputs for the applications. The process of data fusion is aided through least square regression learning to determine the errors in different time instances. The indefinite and definite data fusion instances are differentiated using this regression model to identify the errors in fore-hand. Besides, the differentiation relies on the application run-time interval to progress data fusion within the same or extended time instance and data slots. In this manner the differentiation along with the error identification is regular until the application required data is met. The performance of this technique is verified using network simulator experiments for the metrics error, data utilization ratio, and computation time. The results show that this technique improves data utilization under controlled time and fewer errors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3017384</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data fusion ; Data integration ; Differentiation ; error approximation ; Intelligent sensors ; Intelligent transportation systems ; ITS ; Kalman filters ; Multisensor fusion ; Navigation ; regression learning ; Regression models ; Roads ; Run time (computers) ; sensor data ; Sensor fusion ; Streamlining ; Vehicles</subject><ispartof>IEEE sensors journal, 2021-07, Vol.21 (14), p.15564-15573</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-af5d55258e4a683bc4e7114019820fb749fea673520d5796aaa335010ace1273</citedby><cites>FETCH-LOGICAL-c293t-af5d55258e4a683bc4e7114019820fb749fea673520d5796aaa335010ace1273</cites><orcidid>0000-0002-9456-7010 ; 0000-0003-4083-6163 ; 0000-0001-6686-4424 ; 0000-0002-3608-7158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9169903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9169903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manogaran, Gunasekaran</creatorcontrib><creatorcontrib>Balasubramanian, Venki</creatorcontrib><creatorcontrib>Rawal, Bharat S.</creatorcontrib><creatorcontrib>Saravanan, Vijayalakshmi</creatorcontrib><creatorcontrib>Montenegro-Marin, Carlos Enrique</creatorcontrib><creatorcontrib>Ramachandran, Varatharajan</creatorcontrib><creatorcontrib>Kumar, Priyan Malarvizhi</creatorcontrib><title>Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion process provides accurate and stable data required for the applications in a recurrent manner. In order to enhance the data fusion of connected vehicles, this article introduces multi-variate data fusion (MVDF) technique. This technique is competent in handling asynchronous and discrete data from the environment and streamlining them into continuous and delay-less inputs for the applications. The process of data fusion is aided through least square regression learning to determine the errors in different time instances. The indefinite and definite data fusion instances are differentiated using this regression model to identify the errors in fore-hand. Besides, the differentiation relies on the application run-time interval to progress data fusion within the same or extended time instance and data slots. In this manner the differentiation along with the error identification is regular until the application required data is met. The performance of this technique is verified using network simulator experiments for the metrics error, data utilization ratio, and computation time. The results show that this technique improves data utilization under controlled time and fewer errors.</description><subject>Data fusion</subject><subject>Data integration</subject><subject>Differentiation</subject><subject>error approximation</subject><subject>Intelligent sensors</subject><subject>Intelligent transportation systems</subject><subject>ITS</subject><subject>Kalman filters</subject><subject>Multisensor fusion</subject><subject>Navigation</subject><subject>regression learning</subject><subject>Regression models</subject><subject>Roads</subject><subject>Run time (computers)</subject><subject>sensor data</subject><subject>Sensor fusion</subject><subject>Streamlining</subject><subject>Vehicles</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP03TPMrcdDIVXBHfQtbezowunUn6sG9vy4ZP914459zDD6FbSiaUEvXwupq9TxhhZMIJlTxPz9CICpEnVKb5-bBzkqRcfl-iqxC2hFAlhRyh6q1rok2-jLcmAn4y0eB5F2zrcAHlj7O_HeC69fgTqq60boNX4EJ_z7xvfcDW4YWL0DR2Ay7iwhsX9q2PJg4Rq0OIsAvX6KI2TYCb0xyjYj4rpi_J8uN5MX1cJiVTPCamFpUQTOSQmizn6zIFSWnaV80ZqdcyVTWYTHLBSCWkyowxnAtCiSmBMsnH6P4Yu_dtXztEvW077_qPmvW5NGNC8l5Fj6rStyF4qPXe253xB02JHljqgaUeWOoTy95zd_RYAPjXK5opRTj_A9xtcF4</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Manogaran, Gunasekaran</creator><creator>Balasubramanian, Venki</creator><creator>Rawal, Bharat S.</creator><creator>Saravanan, Vijayalakshmi</creator><creator>Montenegro-Marin, Carlos Enrique</creator><creator>Ramachandran, Varatharajan</creator><creator>Kumar, Priyan Malarvizhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9456-7010</orcidid><orcidid>https://orcid.org/0000-0003-4083-6163</orcidid><orcidid>https://orcid.org/0000-0001-6686-4424</orcidid><orcidid>https://orcid.org/0000-0002-3608-7158</orcidid></search><sort><creationdate>20210715</creationdate><title>Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems</title><author>Manogaran, Gunasekaran ; Balasubramanian, Venki ; Rawal, Bharat S. ; Saravanan, Vijayalakshmi ; Montenegro-Marin, Carlos Enrique ; Ramachandran, Varatharajan ; Kumar, Priyan Malarvizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-af5d55258e4a683bc4e7114019820fb749fea673520d5796aaa335010ace1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data fusion</topic><topic>Data integration</topic><topic>Differentiation</topic><topic>error approximation</topic><topic>Intelligent sensors</topic><topic>Intelligent transportation systems</topic><topic>ITS</topic><topic>Kalman filters</topic><topic>Multisensor fusion</topic><topic>Navigation</topic><topic>regression learning</topic><topic>Regression models</topic><topic>Roads</topic><topic>Run time (computers)</topic><topic>sensor data</topic><topic>Sensor fusion</topic><topic>Streamlining</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manogaran, Gunasekaran</creatorcontrib><creatorcontrib>Balasubramanian, Venki</creatorcontrib><creatorcontrib>Rawal, Bharat S.</creatorcontrib><creatorcontrib>Saravanan, Vijayalakshmi</creatorcontrib><creatorcontrib>Montenegro-Marin, Carlos Enrique</creatorcontrib><creatorcontrib>Ramachandran, Varatharajan</creatorcontrib><creatorcontrib>Kumar, Priyan Malarvizhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manogaran, Gunasekaran</au><au>Balasubramanian, Venki</au><au>Rawal, Bharat S.</au><au>Saravanan, Vijayalakshmi</au><au>Montenegro-Marin, Carlos Enrique</au><au>Ramachandran, Varatharajan</au><au>Kumar, Priyan Malarvizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-07-15</date><risdate>2021</risdate><volume>21</volume><issue>14</issue><spage>15564</spage><epage>15573</epage><pages>15564-15573</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion process provides accurate and stable data required for the applications in a recurrent manner. In order to enhance the data fusion of connected vehicles, this article introduces multi-variate data fusion (MVDF) technique. This technique is competent in handling asynchronous and discrete data from the environment and streamlining them into continuous and delay-less inputs for the applications. The process of data fusion is aided through least square regression learning to determine the errors in different time instances. The indefinite and definite data fusion instances are differentiated using this regression model to identify the errors in fore-hand. Besides, the differentiation relies on the application run-time interval to progress data fusion within the same or extended time instance and data slots. In this manner the differentiation along with the error identification is regular until the application required data is met. The performance of this technique is verified using network simulator experiments for the metrics error, data utilization ratio, and computation time. The results show that this technique improves data utilization under controlled time and fewer errors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3017384</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9456-7010</orcidid><orcidid>https://orcid.org/0000-0003-4083-6163</orcidid><orcidid>https://orcid.org/0000-0001-6686-4424</orcidid><orcidid>https://orcid.org/0000-0002-3608-7158</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-07, Vol.21 (14), p.15564-15573 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9169903 |
source | IEEE Electronic Library (IEL) |
subjects | Data fusion Data integration Differentiation error approximation Intelligent sensors Intelligent transportation systems ITS Kalman filters Multisensor fusion Navigation regression learning Regression models Roads Run time (computers) sensor data Sensor fusion Streamlining Vehicles |
title | Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Variate%20Data%20Fusion%20Technique%20for%20Reducing%20Sensor%20Errors%20in%20Intelligent%20Transportation%20Systems&rft.jtitle=IEEE%20sensors%20journal&rft.au=Manogaran,%20Gunasekaran&rft.date=2021-07-15&rft.volume=21&rft.issue=14&rft.spage=15564&rft.epage=15573&rft.pages=15564-15573&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3017384&rft_dat=%3Cproquest_RIE%3E2552162573%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552162573&rft_id=info:pmid/&rft_ieee_id=9169903&rfr_iscdi=true |