Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems

Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-07, Vol.21 (14), p.15564-15573
Hauptverfasser: Manogaran, Gunasekaran, Balasubramanian, Venki, Rawal, Bharat S., Saravanan, Vijayalakshmi, Montenegro-Marin, Carlos Enrique, Ramachandran, Varatharajan, Kumar, Priyan Malarvizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15573
container_issue 14
container_start_page 15564
container_title IEEE sensors journal
container_volume 21
creator Manogaran, Gunasekaran
Balasubramanian, Venki
Rawal, Bharat S.
Saravanan, Vijayalakshmi
Montenegro-Marin, Carlos Enrique
Ramachandran, Varatharajan
Kumar, Priyan Malarvizhi
description Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion process provides accurate and stable data required for the applications in a recurrent manner. In order to enhance the data fusion of connected vehicles, this article introduces multi-variate data fusion (MVDF) technique. This technique is competent in handling asynchronous and discrete data from the environment and streamlining them into continuous and delay-less inputs for the applications. The process of data fusion is aided through least square regression learning to determine the errors in different time instances. The indefinite and definite data fusion instances are differentiated using this regression model to identify the errors in fore-hand. Besides, the differentiation relies on the application run-time interval to progress data fusion within the same or extended time instance and data slots. In this manner the differentiation along with the error identification is regular until the application required data is met. The performance of this technique is verified using network simulator experiments for the metrics error, data utilization ratio, and computation time. The results show that this technique improves data utilization under controlled time and fewer errors.
doi_str_mv 10.1109/JSEN.2020.3017384
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9169903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9169903</ieee_id><sourcerecordid>2552162573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-af5d55258e4a683bc4e7114019820fb749fea673520d5796aaa335010ace1273</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP03TPMrcdDIVXBHfQtbezowunUn6sG9vy4ZP914459zDD6FbSiaUEvXwupq9TxhhZMIJlTxPz9CICpEnVKb5-bBzkqRcfl-iqxC2hFAlhRyh6q1rok2-jLcmAn4y0eB5F2zrcAHlj7O_HeC69fgTqq60boNX4EJ_z7xvfcDW4YWL0DR2Ay7iwhsX9q2PJg4Rq0OIsAvX6KI2TYCb0xyjYj4rpi_J8uN5MX1cJiVTPCamFpUQTOSQmizn6zIFSWnaV80ZqdcyVTWYTHLBSCWkyowxnAtCiSmBMsnH6P4Yu_dtXztEvW077_qPmvW5NGNC8l5Fj6rStyF4qPXe253xB02JHljqgaUeWOoTy95zd_RYAPjXK5opRTj_A9xtcF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552162573</pqid></control><display><type>article</type><title>Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Manogaran, Gunasekaran ; Balasubramanian, Venki ; Rawal, Bharat S. ; Saravanan, Vijayalakshmi ; Montenegro-Marin, Carlos Enrique ; Ramachandran, Varatharajan ; Kumar, Priyan Malarvizhi</creator><creatorcontrib>Manogaran, Gunasekaran ; Balasubramanian, Venki ; Rawal, Bharat S. ; Saravanan, Vijayalakshmi ; Montenegro-Marin, Carlos Enrique ; Ramachandran, Varatharajan ; Kumar, Priyan Malarvizhi</creatorcontrib><description>Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion process provides accurate and stable data required for the applications in a recurrent manner. In order to enhance the data fusion of connected vehicles, this article introduces multi-variate data fusion (MVDF) technique. This technique is competent in handling asynchronous and discrete data from the environment and streamlining them into continuous and delay-less inputs for the applications. The process of data fusion is aided through least square regression learning to determine the errors in different time instances. The indefinite and definite data fusion instances are differentiated using this regression model to identify the errors in fore-hand. Besides, the differentiation relies on the application run-time interval to progress data fusion within the same or extended time instance and data slots. In this manner the differentiation along with the error identification is regular until the application required data is met. The performance of this technique is verified using network simulator experiments for the metrics error, data utilization ratio, and computation time. The results show that this technique improves data utilization under controlled time and fewer errors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3017384</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Data fusion ; Data integration ; Differentiation ; error approximation ; Intelligent sensors ; Intelligent transportation systems ; ITS ; Kalman filters ; Multisensor fusion ; Navigation ; regression learning ; Regression models ; Roads ; Run time (computers) ; sensor data ; Sensor fusion ; Streamlining ; Vehicles</subject><ispartof>IEEE sensors journal, 2021-07, Vol.21 (14), p.15564-15573</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-af5d55258e4a683bc4e7114019820fb749fea673520d5796aaa335010ace1273</citedby><cites>FETCH-LOGICAL-c293t-af5d55258e4a683bc4e7114019820fb749fea673520d5796aaa335010ace1273</cites><orcidid>0000-0002-9456-7010 ; 0000-0003-4083-6163 ; 0000-0001-6686-4424 ; 0000-0002-3608-7158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9169903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9169903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manogaran, Gunasekaran</creatorcontrib><creatorcontrib>Balasubramanian, Venki</creatorcontrib><creatorcontrib>Rawal, Bharat S.</creatorcontrib><creatorcontrib>Saravanan, Vijayalakshmi</creatorcontrib><creatorcontrib>Montenegro-Marin, Carlos Enrique</creatorcontrib><creatorcontrib>Ramachandran, Varatharajan</creatorcontrib><creatorcontrib>Kumar, Priyan Malarvizhi</creatorcontrib><title>Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion process provides accurate and stable data required for the applications in a recurrent manner. In order to enhance the data fusion of connected vehicles, this article introduces multi-variate data fusion (MVDF) technique. This technique is competent in handling asynchronous and discrete data from the environment and streamlining them into continuous and delay-less inputs for the applications. The process of data fusion is aided through least square regression learning to determine the errors in different time instances. The indefinite and definite data fusion instances are differentiated using this regression model to identify the errors in fore-hand. Besides, the differentiation relies on the application run-time interval to progress data fusion within the same or extended time instance and data slots. In this manner the differentiation along with the error identification is regular until the application required data is met. The performance of this technique is verified using network simulator experiments for the metrics error, data utilization ratio, and computation time. The results show that this technique improves data utilization under controlled time and fewer errors.</description><subject>Data fusion</subject><subject>Data integration</subject><subject>Differentiation</subject><subject>error approximation</subject><subject>Intelligent sensors</subject><subject>Intelligent transportation systems</subject><subject>ITS</subject><subject>Kalman filters</subject><subject>Multisensor fusion</subject><subject>Navigation</subject><subject>regression learning</subject><subject>Regression models</subject><subject>Roads</subject><subject>Run time (computers)</subject><subject>sensor data</subject><subject>Sensor fusion</subject><subject>Streamlining</subject><subject>Vehicles</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP03TPMrcdDIVXBHfQtbezowunUn6sG9vy4ZP914459zDD6FbSiaUEvXwupq9TxhhZMIJlTxPz9CICpEnVKb5-bBzkqRcfl-iqxC2hFAlhRyh6q1rok2-jLcmAn4y0eB5F2zrcAHlj7O_HeC69fgTqq60boNX4EJ_z7xvfcDW4YWL0DR2Ay7iwhsX9q2PJg4Rq0OIsAvX6KI2TYCb0xyjYj4rpi_J8uN5MX1cJiVTPCamFpUQTOSQmizn6zIFSWnaV80ZqdcyVTWYTHLBSCWkyowxnAtCiSmBMsnH6P4Yu_dtXztEvW077_qPmvW5NGNC8l5Fj6rStyF4qPXe253xB02JHljqgaUeWOoTy95zd_RYAPjXK5opRTj_A9xtcF4</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Manogaran, Gunasekaran</creator><creator>Balasubramanian, Venki</creator><creator>Rawal, Bharat S.</creator><creator>Saravanan, Vijayalakshmi</creator><creator>Montenegro-Marin, Carlos Enrique</creator><creator>Ramachandran, Varatharajan</creator><creator>Kumar, Priyan Malarvizhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9456-7010</orcidid><orcidid>https://orcid.org/0000-0003-4083-6163</orcidid><orcidid>https://orcid.org/0000-0001-6686-4424</orcidid><orcidid>https://orcid.org/0000-0002-3608-7158</orcidid></search><sort><creationdate>20210715</creationdate><title>Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems</title><author>Manogaran, Gunasekaran ; Balasubramanian, Venki ; Rawal, Bharat S. ; Saravanan, Vijayalakshmi ; Montenegro-Marin, Carlos Enrique ; Ramachandran, Varatharajan ; Kumar, Priyan Malarvizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-af5d55258e4a683bc4e7114019820fb749fea673520d5796aaa335010ace1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data fusion</topic><topic>Data integration</topic><topic>Differentiation</topic><topic>error approximation</topic><topic>Intelligent sensors</topic><topic>Intelligent transportation systems</topic><topic>ITS</topic><topic>Kalman filters</topic><topic>Multisensor fusion</topic><topic>Navigation</topic><topic>regression learning</topic><topic>Regression models</topic><topic>Roads</topic><topic>Run time (computers)</topic><topic>sensor data</topic><topic>Sensor fusion</topic><topic>Streamlining</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manogaran, Gunasekaran</creatorcontrib><creatorcontrib>Balasubramanian, Venki</creatorcontrib><creatorcontrib>Rawal, Bharat S.</creatorcontrib><creatorcontrib>Saravanan, Vijayalakshmi</creatorcontrib><creatorcontrib>Montenegro-Marin, Carlos Enrique</creatorcontrib><creatorcontrib>Ramachandran, Varatharajan</creatorcontrib><creatorcontrib>Kumar, Priyan Malarvizhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manogaran, Gunasekaran</au><au>Balasubramanian, Venki</au><au>Rawal, Bharat S.</au><au>Saravanan, Vijayalakshmi</au><au>Montenegro-Marin, Carlos Enrique</au><au>Ramachandran, Varatharajan</au><au>Kumar, Priyan Malarvizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-07-15</date><risdate>2021</risdate><volume>21</volume><issue>14</issue><spage>15564</spage><epage>15573</epage><pages>15564-15573</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Connected vehicles in intelligent transportation system (ITS) scenario rely on environmental data for supporting user-centric applications along the driving time. Sensors equipped in the vehicles are responsible for accumulating data from the environment, followed by the fusion process. Such fusion process provides accurate and stable data required for the applications in a recurrent manner. In order to enhance the data fusion of connected vehicles, this article introduces multi-variate data fusion (MVDF) technique. This technique is competent in handling asynchronous and discrete data from the environment and streamlining them into continuous and delay-less inputs for the applications. The process of data fusion is aided through least square regression learning to determine the errors in different time instances. The indefinite and definite data fusion instances are differentiated using this regression model to identify the errors in fore-hand. Besides, the differentiation relies on the application run-time interval to progress data fusion within the same or extended time instance and data slots. In this manner the differentiation along with the error identification is regular until the application required data is met. The performance of this technique is verified using network simulator experiments for the metrics error, data utilization ratio, and computation time. The results show that this technique improves data utilization under controlled time and fewer errors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3017384</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9456-7010</orcidid><orcidid>https://orcid.org/0000-0003-4083-6163</orcidid><orcidid>https://orcid.org/0000-0001-6686-4424</orcidid><orcidid>https://orcid.org/0000-0002-3608-7158</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-07, Vol.21 (14), p.15564-15573
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9169903
source IEEE Electronic Library (IEL)
subjects Data fusion
Data integration
Differentiation
error approximation
Intelligent sensors
Intelligent transportation systems
ITS
Kalman filters
Multisensor fusion
Navigation
regression learning
Regression models
Roads
Run time (computers)
sensor data
Sensor fusion
Streamlining
Vehicles
title Multi-Variate Data Fusion Technique for Reducing Sensor Errors in Intelligent Transportation Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Variate%20Data%20Fusion%20Technique%20for%20Reducing%20Sensor%20Errors%20in%20Intelligent%20Transportation%20Systems&rft.jtitle=IEEE%20sensors%20journal&rft.au=Manogaran,%20Gunasekaran&rft.date=2021-07-15&rft.volume=21&rft.issue=14&rft.spage=15564&rft.epage=15573&rft.pages=15564-15573&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3017384&rft_dat=%3Cproquest_RIE%3E2552162573%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552162573&rft_id=info:pmid/&rft_ieee_id=9169903&rfr_iscdi=true