10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission Over 160 Km

We describe in detail our recent demonstration of a 10 Tbit/s secure physical layer transmission that we achieved by using digital coherent QAM quantum noise stream cipher (QNSC) and injection-locked WDM techniques. We used an FPGA-based transmitter and receiver to demonstrate a 165 channel polariza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-02, Vol.39 (4), p.1056-1063
Hauptverfasser: Yoshida, Masato, Kan, Takashi, Kasai, Keisuke, Hirooka, Toshihiko, Nakazawa, Masataka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1063
container_issue 4
container_start_page 1056
container_title Journal of lightwave technology
container_volume 39
creator Yoshida, Masato
Kan, Takashi
Kasai, Keisuke
Hirooka, Toshihiko
Nakazawa, Masataka
description We describe in detail our recent demonstration of a 10 Tbit/s secure physical layer transmission that we achieved by using digital coherent QAM quantum noise stream cipher (QNSC) and injection-locked WDM techniques. We used an FPGA-based transmitter and receiver to demonstrate a 165 channel polarization-multiplexed WDM 5 Gbaud 128 QAM/QNSC (70 Gbit/s) on-line transmission over 160 km with a spectral efficiency of 6 bit/s/Hz. In the present system, the original 128 QAM data were encrypted in a 1024 × 1024 QAM format using basis information. The encrypted signal was then masked by a large ASE noise, which reduced the detection "success" probability for an eavesdropper to 0.13% for each symbol. Furthermore, the multiplicity of the original QAM data and the seed keys used to generate the basis information were arbitrarily changed with time, which makes the decryption much more difficult.
doi_str_mv 10.1109/JLT.2020.3016693
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9167410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167410</ieee_id><sourcerecordid>2487437936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5bab022b3251931c7c0af5cc4d2785774cb209605629fdc6f472285f1f9023763</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz2lnZ7-yxxL8bLUU43lJthtMMUndTQT_vSkVLzOHed4Z5iHkmsGMMTDz51U-Q0CYcWBKGX5CJkzKNEFk_JRMQHOepBrFObmIcQfAhEj1hCwZ0Lys-3mkm8UL3QxF2w8Nfe3q6OlbH3zR0Kzef_hAs26svu1pHoo2NnWMddfS9fc4YgrosrkkZ1XxGf3VX5-S9_u7PHtMVuuHp2yxShwa1ieyLEpALDlKZjhz2kFRSefEFnUqtRauRDAKpEJTbZ2qhEZMZcUqA8i14lNye9y7D93X4GNvd90Q2vGkxfEpwbXhBwqOlAtdjMFXdh_qpgg_loE9KLOjMntQZv-UjZGbY6T23v_jhiktGPBf785jtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487437936</pqid></control><display><type>article</type><title>10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission Over 160 Km</title><source>IEEE Electronic Library (IEL)</source><creator>Yoshida, Masato ; Kan, Takashi ; Kasai, Keisuke ; Hirooka, Toshihiko ; Nakazawa, Masataka</creator><creatorcontrib>Yoshida, Masato ; Kan, Takashi ; Kasai, Keisuke ; Hirooka, Toshihiko ; Nakazawa, Masataka</creatorcontrib><description>We describe in detail our recent demonstration of a 10 Tbit/s secure physical layer transmission that we achieved by using digital coherent QAM quantum noise stream cipher (QNSC) and injection-locked WDM techniques. We used an FPGA-based transmitter and receiver to demonstrate a 165 channel polarization-multiplexed WDM 5 Gbaud 128 QAM/QNSC (70 Gbit/s) on-line transmission over 160 km with a spectral efficiency of 6 bit/s/Hz. In the present system, the original 128 QAM data were encrypted in a 1024 × 1024 QAM format using basis information. The encrypted signal was then masked by a large ASE noise, which reduced the detection "success" probability for an eavesdropper to 0.13% for each symbol. Furthermore, the multiplicity of the original QAM data and the seed keys used to generate the basis information were arbitrarily changed with time, which makes the decryption much more difficult.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3016693</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cryptography ; Encryption ; Field programmable gate arrays ; Finite impulse response filters ; Noise ; Optical fiber communication ; Optical transmitters ; Quadrature amplitude modulation ; quantum cryptography ; Receivers ; Wavelength division multiplexing</subject><ispartof>Journal of lightwave technology, 2021-02, Vol.39 (4), p.1056-1063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5bab022b3251931c7c0af5cc4d2785774cb209605629fdc6f472285f1f9023763</citedby><cites>FETCH-LOGICAL-c291t-5bab022b3251931c7c0af5cc4d2785774cb209605629fdc6f472285f1f9023763</cites><orcidid>0000-0002-0125-8789 ; 0000-0002-8818-9519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9167410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoshida, Masato</creatorcontrib><creatorcontrib>Kan, Takashi</creatorcontrib><creatorcontrib>Kasai, Keisuke</creatorcontrib><creatorcontrib>Hirooka, Toshihiko</creatorcontrib><creatorcontrib>Nakazawa, Masataka</creatorcontrib><title>10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission Over 160 Km</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We describe in detail our recent demonstration of a 10 Tbit/s secure physical layer transmission that we achieved by using digital coherent QAM quantum noise stream cipher (QNSC) and injection-locked WDM techniques. We used an FPGA-based transmitter and receiver to demonstrate a 165 channel polarization-multiplexed WDM 5 Gbaud 128 QAM/QNSC (70 Gbit/s) on-line transmission over 160 km with a spectral efficiency of 6 bit/s/Hz. In the present system, the original 128 QAM data were encrypted in a 1024 × 1024 QAM format using basis information. The encrypted signal was then masked by a large ASE noise, which reduced the detection "success" probability for an eavesdropper to 0.13% for each symbol. Furthermore, the multiplicity of the original QAM data and the seed keys used to generate the basis information were arbitrarily changed with time, which makes the decryption much more difficult.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Encryption</subject><subject>Field programmable gate arrays</subject><subject>Finite impulse response filters</subject><subject>Noise</subject><subject>Optical fiber communication</subject><subject>Optical transmitters</subject><subject>Quadrature amplitude modulation</subject><subject>quantum cryptography</subject><subject>Receivers</subject><subject>Wavelength division multiplexing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz2lnZ7-yxxL8bLUU43lJthtMMUndTQT_vSkVLzOHed4Z5iHkmsGMMTDz51U-Q0CYcWBKGX5CJkzKNEFk_JRMQHOepBrFObmIcQfAhEj1hCwZ0Lys-3mkm8UL3QxF2w8Nfe3q6OlbH3zR0Kzef_hAs26svu1pHoo2NnWMddfS9fc4YgrosrkkZ1XxGf3VX5-S9_u7PHtMVuuHp2yxShwa1ieyLEpALDlKZjhz2kFRSefEFnUqtRauRDAKpEJTbZ2qhEZMZcUqA8i14lNye9y7D93X4GNvd90Q2vGkxfEpwbXhBwqOlAtdjMFXdh_qpgg_loE9KLOjMntQZv-UjZGbY6T23v_jhiktGPBf785jtA</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Yoshida, Masato</creator><creator>Kan, Takashi</creator><creator>Kasai, Keisuke</creator><creator>Hirooka, Toshihiko</creator><creator>Nakazawa, Masataka</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0125-8789</orcidid><orcidid>https://orcid.org/0000-0002-8818-9519</orcidid></search><sort><creationdate>20210215</creationdate><title>10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission Over 160 Km</title><author>Yoshida, Masato ; Kan, Takashi ; Kasai, Keisuke ; Hirooka, Toshihiko ; Nakazawa, Masataka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5bab022b3251931c7c0af5cc4d2785774cb209605629fdc6f472285f1f9023763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Encryption</topic><topic>Field programmable gate arrays</topic><topic>Finite impulse response filters</topic><topic>Noise</topic><topic>Optical fiber communication</topic><topic>Optical transmitters</topic><topic>Quadrature amplitude modulation</topic><topic>quantum cryptography</topic><topic>Receivers</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Masato</creatorcontrib><creatorcontrib>Kan, Takashi</creatorcontrib><creatorcontrib>Kasai, Keisuke</creatorcontrib><creatorcontrib>Hirooka, Toshihiko</creatorcontrib><creatorcontrib>Nakazawa, Masataka</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshida, Masato</au><au>Kan, Takashi</au><au>Kasai, Keisuke</au><au>Hirooka, Toshihiko</au><au>Nakazawa, Masataka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission Over 160 Km</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-02-15</date><risdate>2021</risdate><volume>39</volume><issue>4</issue><spage>1056</spage><epage>1063</epage><pages>1056-1063</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We describe in detail our recent demonstration of a 10 Tbit/s secure physical layer transmission that we achieved by using digital coherent QAM quantum noise stream cipher (QNSC) and injection-locked WDM techniques. We used an FPGA-based transmitter and receiver to demonstrate a 165 channel polarization-multiplexed WDM 5 Gbaud 128 QAM/QNSC (70 Gbit/s) on-line transmission over 160 km with a spectral efficiency of 6 bit/s/Hz. In the present system, the original 128 QAM data were encrypted in a 1024 × 1024 QAM format using basis information. The encrypted signal was then masked by a large ASE noise, which reduced the detection "success" probability for an eavesdropper to 0.13% for each symbol. Furthermore, the multiplicity of the original QAM data and the seed keys used to generate the basis information were arbitrarily changed with time, which makes the decryption much more difficult.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3016693</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0125-8789</orcidid><orcidid>https://orcid.org/0000-0002-8818-9519</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-02, Vol.39 (4), p.1056-1063
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_9167410
source IEEE Electronic Library (IEL)
subjects Algorithms
Cryptography
Encryption
Field programmable gate arrays
Finite impulse response filters
Noise
Optical fiber communication
Optical transmitters
Quadrature amplitude modulation
quantum cryptography
Receivers
Wavelength division multiplexing
title 10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission Over 160 Km
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=10%20Tbit/s%20QAM%20Quantum%20Noise%20Stream%20Cipher%20Coherent%20Transmission%20Over%20160%20Km&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Yoshida,%20Masato&rft.date=2021-02-15&rft.volume=39&rft.issue=4&rft.spage=1056&rft.epage=1063&rft.pages=1056-1063&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3016693&rft_dat=%3Cproquest_RIE%3E2487437936%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487437936&rft_id=info:pmid/&rft_ieee_id=9167410&rfr_iscdi=true