Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit

Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Yuan, Zhenzhong, Zhang, Yuxin, Wang, Dong, Jiang, Yingdan, Guo, Ronghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Yuan, Zhenzhong
Zhang, Yuxin
Wang, Dong
Jiang, Yingdan
Guo, Ronghai
description Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used in this paper: the excitation magnetic field is orthogonal to the magnetic field to be measured, and the external magnetic field is detected by measuring the voltage signal in the pick-up coil. The excitation magnetic field changes with the parallel excitation second harmonic method while the direction of the excitation magnetic field does not change in the orthogonal fundamental mode scheme, which can effectively reduce the influence of Barkhausen noise. The magnetic fluxgate circuit is designed based on the orthogonal fundamental mode scheme and its performance indexes are tested. The range of the magnetic fluxgate is ±100000 nT, the sensitivity is 100 μV/nT, the output noise is 8.9 pT/rt(Hz)@1 Hz, and the bandwidth is DC-15 kHz. The orthogonal fundamental mode fluxgate improves the bandwidth performance while enabling low-noise magnetic field measurements in practical applications.
doi_str_mv 10.1109/ACCESS.2020.3016783
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9167244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167244</ieee_id><doaj_id>oai_doaj_org_article_b66cb4155c434d3a826d6c5d89d84b2b</doaj_id><sourcerecordid>2454643372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-53d758f3d3a9c3971756c0c250d5658d96b46b90b85c906fac7a0f3f7c491cb73</originalsourceid><addsrcrecordid>eNpNUE1rwkAQDaWFSusv8BLoWbvfH0cJ2goWobbnZbO70UjM2t0E2n_ftRHpXGZ4M-895mXZBIIZhEA-z4tisd3OEEBghgFkXOCbbIQgk1NMMbv9N99n4xgPIJVIEOWjrHh30elg9rlv827v8k3o9n7nW93ky761-ujaLs1v3rp82fTfO925fOva6ENe1MH0dfeY3VW6iW586Q_Z53LxUbxO15uXVTFfTw0BoptSbDkVFbZYS4Mlh5wyAwyiwFJGhZWsJKyUoBTUSMAqbbgGFa64IRKakuOHbDXoWq8P6hTqow4_yuta_QE-7JQOXW0ap0rGTEkgpYZgkgwFYpYZaoW0gpSoTFpPg9Yp-K_exU4dfB_S11EhQgkjGHOUrvBwZYKPMbjq6gqBOoevhvDVOXx1CT-xJgOrds5dGTItESH4FwBffoc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643372</pqid></control><display><type>article</type><title>Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Yuan, Zhenzhong ; Zhang, Yuxin ; Wang, Dong ; Jiang, Yingdan ; Guo, Ronghai</creator><creatorcontrib>Yuan, Zhenzhong ; Zhang, Yuxin ; Wang, Dong ; Jiang, Yingdan ; Guo, Ronghai</creatorcontrib><description>Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used in this paper: the excitation magnetic field is orthogonal to the magnetic field to be measured, and the external magnetic field is detected by measuring the voltage signal in the pick-up coil. The excitation magnetic field changes with the parallel excitation second harmonic method while the direction of the excitation magnetic field does not change in the orthogonal fundamental mode scheme, which can effectively reduce the influence of Barkhausen noise. The magnetic fluxgate circuit is designed based on the orthogonal fundamental mode scheme and its performance indexes are tested. The range of the magnetic fluxgate is ±100000 nT, the sensitivity is 100 μV/nT, the output noise is 8.9 pT/rt(Hz)@1 Hz, and the bandwidth is DC-15 kHz. The orthogonal fundamental mode fluxgate improves the bandwidth performance while enabling low-noise magnetic field measurements in practical applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3016783</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bandwidths ; Barkhausen effect ; Barkhausen noise ; Circuit design ; Circuits ; Excitation ; Fluxgate magnetometers ; Low noise ; Low noise fluxgate ; Magnetic cores ; Magnetic field measurement ; Magnetic fields ; Magnetic hysteresis ; Magnetism ; Noise ; Noise reduction ; orthogonal fundamental mode ; Performance indices ; Pickup coils ; Probes ; Second harmonic generation ; Voltage measurement ; Wires</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-53d758f3d3a9c3971756c0c250d5658d96b46b90b85c906fac7a0f3f7c491cb73</citedby><cites>FETCH-LOGICAL-c408t-53d758f3d3a9c3971756c0c250d5658d96b46b90b85c906fac7a0f3f7c491cb73</cites><orcidid>0000-0002-7734-8764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167244$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Yuan, Zhenzhong</creatorcontrib><creatorcontrib>Zhang, Yuxin</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Jiang, Yingdan</creatorcontrib><creatorcontrib>Guo, Ronghai</creatorcontrib><title>Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit</title><title>IEEE access</title><addtitle>Access</addtitle><description>Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used in this paper: the excitation magnetic field is orthogonal to the magnetic field to be measured, and the external magnetic field is detected by measuring the voltage signal in the pick-up coil. The excitation magnetic field changes with the parallel excitation second harmonic method while the direction of the excitation magnetic field does not change in the orthogonal fundamental mode scheme, which can effectively reduce the influence of Barkhausen noise. The magnetic fluxgate circuit is designed based on the orthogonal fundamental mode scheme and its performance indexes are tested. The range of the magnetic fluxgate is ±100000 nT, the sensitivity is 100 μV/nT, the output noise is 8.9 pT/rt(Hz)@1 Hz, and the bandwidth is DC-15 kHz. The orthogonal fundamental mode fluxgate improves the bandwidth performance while enabling low-noise magnetic field measurements in practical applications.</description><subject>Bandwidths</subject><subject>Barkhausen effect</subject><subject>Barkhausen noise</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Excitation</subject><subject>Fluxgate magnetometers</subject><subject>Low noise</subject><subject>Low noise fluxgate</subject><subject>Magnetic cores</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>orthogonal fundamental mode</subject><subject>Performance indices</subject><subject>Pickup coils</subject><subject>Probes</subject><subject>Second harmonic generation</subject><subject>Voltage measurement</subject><subject>Wires</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQDaWFSusv8BLoWbvfH0cJ2goWobbnZbO70UjM2t0E2n_ftRHpXGZ4M-895mXZBIIZhEA-z4tisd3OEEBghgFkXOCbbIQgk1NMMbv9N99n4xgPIJVIEOWjrHh30elg9rlv827v8k3o9n7nW93ky761-ujaLs1v3rp82fTfO925fOva6ENe1MH0dfeY3VW6iW586Q_Z53LxUbxO15uXVTFfTw0BoptSbDkVFbZYS4Mlh5wyAwyiwFJGhZWsJKyUoBTUSMAqbbgGFa64IRKakuOHbDXoWq8P6hTqow4_yuta_QE-7JQOXW0ap0rGTEkgpYZgkgwFYpYZaoW0gpSoTFpPg9Yp-K_exU4dfB_S11EhQgkjGHOUrvBwZYKPMbjq6gqBOoevhvDVOXx1CT-xJgOrds5dGTItESH4FwBffoc</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yuan, Zhenzhong</creator><creator>Zhang, Yuxin</creator><creator>Wang, Dong</creator><creator>Jiang, Yingdan</creator><creator>Guo, Ronghai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7734-8764</orcidid></search><sort><creationdate>20200101</creationdate><title>Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit</title><author>Yuan, Zhenzhong ; Zhang, Yuxin ; Wang, Dong ; Jiang, Yingdan ; Guo, Ronghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-53d758f3d3a9c3971756c0c250d5658d96b46b90b85c906fac7a0f3f7c491cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bandwidths</topic><topic>Barkhausen effect</topic><topic>Barkhausen noise</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Excitation</topic><topic>Fluxgate magnetometers</topic><topic>Low noise</topic><topic>Low noise fluxgate</topic><topic>Magnetic cores</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>orthogonal fundamental mode</topic><topic>Performance indices</topic><topic>Pickup coils</topic><topic>Probes</topic><topic>Second harmonic generation</topic><topic>Voltage measurement</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Zhenzhong</creatorcontrib><creatorcontrib>Zhang, Yuxin</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Jiang, Yingdan</creatorcontrib><creatorcontrib>Guo, Ronghai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Zhenzhong</au><au>Zhang, Yuxin</au><au>Wang, Dong</au><au>Jiang, Yingdan</au><au>Guo, Ronghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used in this paper: the excitation magnetic field is orthogonal to the magnetic field to be measured, and the external magnetic field is detected by measuring the voltage signal in the pick-up coil. The excitation magnetic field changes with the parallel excitation second harmonic method while the direction of the excitation magnetic field does not change in the orthogonal fundamental mode scheme, which can effectively reduce the influence of Barkhausen noise. The magnetic fluxgate circuit is designed based on the orthogonal fundamental mode scheme and its performance indexes are tested. The range of the magnetic fluxgate is ±100000 nT, the sensitivity is 100 μV/nT, the output noise is 8.9 pT/rt(Hz)@1 Hz, and the bandwidth is DC-15 kHz. The orthogonal fundamental mode fluxgate improves the bandwidth performance while enabling low-noise magnetic field measurements in practical applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3016783</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7734-8764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9167244
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Bandwidths
Barkhausen effect
Barkhausen noise
Circuit design
Circuits
Excitation
Fluxgate magnetometers
Low noise
Low noise fluxgate
Magnetic cores
Magnetic field measurement
Magnetic fields
Magnetic hysteresis
Magnetism
Noise
Noise reduction
orthogonal fundamental mode
Performance indices
Pickup coils
Probes
Second harmonic generation
Voltage measurement
Wires
title Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Orthogonal%20Fundamental%20Mode%20Fluxgate%20Sensor%20Circuit&rft.jtitle=IEEE%20access&rft.au=Yuan,%20Zhenzhong&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3016783&rft_dat=%3Cproquest_ieee_%3E2454643372%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643372&rft_id=info:pmid/&rft_ieee_id=9167244&rft_doaj_id=oai_doaj_org_article_b66cb4155c434d3a826d6c5d89d84b2b&rfr_iscdi=true