Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit
Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used i...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Yuan, Zhenzhong Zhang, Yuxin Wang, Dong Jiang, Yingdan Guo, Ronghai |
description | Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used in this paper: the excitation magnetic field is orthogonal to the magnetic field to be measured, and the external magnetic field is detected by measuring the voltage signal in the pick-up coil. The excitation magnetic field changes with the parallel excitation second harmonic method while the direction of the excitation magnetic field does not change in the orthogonal fundamental mode scheme, which can effectively reduce the influence of Barkhausen noise. The magnetic fluxgate circuit is designed based on the orthogonal fundamental mode scheme and its performance indexes are tested. The range of the magnetic fluxgate is ±100000 nT, the sensitivity is 100 μV/nT, the output noise is 8.9 pT/rt(Hz)@1 Hz, and the bandwidth is DC-15 kHz. The orthogonal fundamental mode fluxgate improves the bandwidth performance while enabling low-noise magnetic field measurements in practical applications. |
doi_str_mv | 10.1109/ACCESS.2020.3016783 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9167244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167244</ieee_id><doaj_id>oai_doaj_org_article_b66cb4155c434d3a826d6c5d89d84b2b</doaj_id><sourcerecordid>2454643372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-53d758f3d3a9c3971756c0c250d5658d96b46b90b85c906fac7a0f3f7c491cb73</originalsourceid><addsrcrecordid>eNpNUE1rwkAQDaWFSusv8BLoWbvfH0cJ2goWobbnZbO70UjM2t0E2n_ftRHpXGZ4M-895mXZBIIZhEA-z4tisd3OEEBghgFkXOCbbIQgk1NMMbv9N99n4xgPIJVIEOWjrHh30elg9rlv827v8k3o9n7nW93ky761-ujaLs1v3rp82fTfO925fOva6ENe1MH0dfeY3VW6iW586Q_Z53LxUbxO15uXVTFfTw0BoptSbDkVFbZYS4Mlh5wyAwyiwFJGhZWsJKyUoBTUSMAqbbgGFa64IRKakuOHbDXoWq8P6hTqow4_yuta_QE-7JQOXW0ap0rGTEkgpYZgkgwFYpYZaoW0gpSoTFpPg9Yp-K_exU4dfB_S11EhQgkjGHOUrvBwZYKPMbjq6gqBOoevhvDVOXx1CT-xJgOrds5dGTItESH4FwBffoc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643372</pqid></control><display><type>article</type><title>Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Yuan, Zhenzhong ; Zhang, Yuxin ; Wang, Dong ; Jiang, Yingdan ; Guo, Ronghai</creator><creatorcontrib>Yuan, Zhenzhong ; Zhang, Yuxin ; Wang, Dong ; Jiang, Yingdan ; Guo, Ronghai</creatorcontrib><description>Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used in this paper: the excitation magnetic field is orthogonal to the magnetic field to be measured, and the external magnetic field is detected by measuring the voltage signal in the pick-up coil. The excitation magnetic field changes with the parallel excitation second harmonic method while the direction of the excitation magnetic field does not change in the orthogonal fundamental mode scheme, which can effectively reduce the influence of Barkhausen noise. The magnetic fluxgate circuit is designed based on the orthogonal fundamental mode scheme and its performance indexes are tested. The range of the magnetic fluxgate is ±100000 nT, the sensitivity is 100 μV/nT, the output noise is 8.9 pT/rt(Hz)@1 Hz, and the bandwidth is DC-15 kHz. The orthogonal fundamental mode fluxgate improves the bandwidth performance while enabling low-noise magnetic field measurements in practical applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3016783</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bandwidths ; Barkhausen effect ; Barkhausen noise ; Circuit design ; Circuits ; Excitation ; Fluxgate magnetometers ; Low noise ; Low noise fluxgate ; Magnetic cores ; Magnetic field measurement ; Magnetic fields ; Magnetic hysteresis ; Magnetism ; Noise ; Noise reduction ; orthogonal fundamental mode ; Performance indices ; Pickup coils ; Probes ; Second harmonic generation ; Voltage measurement ; Wires</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-53d758f3d3a9c3971756c0c250d5658d96b46b90b85c906fac7a0f3f7c491cb73</citedby><cites>FETCH-LOGICAL-c408t-53d758f3d3a9c3971756c0c250d5658d96b46b90b85c906fac7a0f3f7c491cb73</cites><orcidid>0000-0002-7734-8764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167244$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Yuan, Zhenzhong</creatorcontrib><creatorcontrib>Zhang, Yuxin</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Jiang, Yingdan</creatorcontrib><creatorcontrib>Guo, Ronghai</creatorcontrib><title>Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit</title><title>IEEE access</title><addtitle>Access</addtitle><description>Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used in this paper: the excitation magnetic field is orthogonal to the magnetic field to be measured, and the external magnetic field is detected by measuring the voltage signal in the pick-up coil. The excitation magnetic field changes with the parallel excitation second harmonic method while the direction of the excitation magnetic field does not change in the orthogonal fundamental mode scheme, which can effectively reduce the influence of Barkhausen noise. The magnetic fluxgate circuit is designed based on the orthogonal fundamental mode scheme and its performance indexes are tested. The range of the magnetic fluxgate is ±100000 nT, the sensitivity is 100 μV/nT, the output noise is 8.9 pT/rt(Hz)@1 Hz, and the bandwidth is DC-15 kHz. The orthogonal fundamental mode fluxgate improves the bandwidth performance while enabling low-noise magnetic field measurements in practical applications.</description><subject>Bandwidths</subject><subject>Barkhausen effect</subject><subject>Barkhausen noise</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Excitation</subject><subject>Fluxgate magnetometers</subject><subject>Low noise</subject><subject>Low noise fluxgate</subject><subject>Magnetic cores</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic hysteresis</subject><subject>Magnetism</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>orthogonal fundamental mode</subject><subject>Performance indices</subject><subject>Pickup coils</subject><subject>Probes</subject><subject>Second harmonic generation</subject><subject>Voltage measurement</subject><subject>Wires</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQDaWFSusv8BLoWbvfH0cJ2goWobbnZbO70UjM2t0E2n_ftRHpXGZ4M-895mXZBIIZhEA-z4tisd3OEEBghgFkXOCbbIQgk1NMMbv9N99n4xgPIJVIEOWjrHh30elg9rlv827v8k3o9n7nW93ky761-ujaLs1v3rp82fTfO925fOva6ENe1MH0dfeY3VW6iW586Q_Z53LxUbxO15uXVTFfTw0BoptSbDkVFbZYS4Mlh5wyAwyiwFJGhZWsJKyUoBTUSMAqbbgGFa64IRKakuOHbDXoWq8P6hTqow4_yuta_QE-7JQOXW0ap0rGTEkgpYZgkgwFYpYZaoW0gpSoTFpPg9Yp-K_exU4dfB_S11EhQgkjGHOUrvBwZYKPMbjq6gqBOoevhvDVOXx1CT-xJgOrds5dGTItESH4FwBffoc</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yuan, Zhenzhong</creator><creator>Zhang, Yuxin</creator><creator>Wang, Dong</creator><creator>Jiang, Yingdan</creator><creator>Guo, Ronghai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7734-8764</orcidid></search><sort><creationdate>20200101</creationdate><title>Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit</title><author>Yuan, Zhenzhong ; Zhang, Yuxin ; Wang, Dong ; Jiang, Yingdan ; Guo, Ronghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-53d758f3d3a9c3971756c0c250d5658d96b46b90b85c906fac7a0f3f7c491cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bandwidths</topic><topic>Barkhausen effect</topic><topic>Barkhausen noise</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Excitation</topic><topic>Fluxgate magnetometers</topic><topic>Low noise</topic><topic>Low noise fluxgate</topic><topic>Magnetic cores</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic hysteresis</topic><topic>Magnetism</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>orthogonal fundamental mode</topic><topic>Performance indices</topic><topic>Pickup coils</topic><topic>Probes</topic><topic>Second harmonic generation</topic><topic>Voltage measurement</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Zhenzhong</creatorcontrib><creatorcontrib>Zhang, Yuxin</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Jiang, Yingdan</creatorcontrib><creatorcontrib>Guo, Ronghai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Zhenzhong</au><au>Zhang, Yuxin</au><au>Wang, Dong</au><au>Jiang, Yingdan</au><au>Guo, Ronghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Currently, magnetic fluxgate circuits used for magnetic field measurements mostly adopt parallel excitation second harmonic generation. The magnetic fluxgate developed by this method cannot possess both low noise and high bandwidth at the same time. The orthogonal fundamental mode fluxgate is used in this paper: the excitation magnetic field is orthogonal to the magnetic field to be measured, and the external magnetic field is detected by measuring the voltage signal in the pick-up coil. The excitation magnetic field changes with the parallel excitation second harmonic method while the direction of the excitation magnetic field does not change in the orthogonal fundamental mode scheme, which can effectively reduce the influence of Barkhausen noise. The magnetic fluxgate circuit is designed based on the orthogonal fundamental mode scheme and its performance indexes are tested. The range of the magnetic fluxgate is ±100000 nT, the sensitivity is 100 μV/nT, the output noise is 8.9 pT/rt(Hz)@1 Hz, and the bandwidth is DC-15 kHz. The orthogonal fundamental mode fluxgate improves the bandwidth performance while enabling low-noise magnetic field measurements in practical applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3016783</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7734-8764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9167244 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Bandwidths Barkhausen effect Barkhausen noise Circuit design Circuits Excitation Fluxgate magnetometers Low noise Low noise fluxgate Magnetic cores Magnetic field measurement Magnetic fields Magnetic hysteresis Magnetism Noise Noise reduction orthogonal fundamental mode Performance indices Pickup coils Probes Second harmonic generation Voltage measurement Wires |
title | Research on the Orthogonal Fundamental Mode Fluxgate Sensor Circuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Orthogonal%20Fundamental%20Mode%20Fluxgate%20Sensor%20Circuit&rft.jtitle=IEEE%20access&rft.au=Yuan,%20Zhenzhong&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3016783&rft_dat=%3Cproquest_ieee_%3E2454643372%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643372&rft_id=info:pmid/&rft_ieee_id=9167244&rft_doaj_id=oai_doaj_org_article_b66cb4155c434d3a826d6c5d89d84b2b&rfr_iscdi=true |