SOM-based R-tree for similarity retrieval
Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color h...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | |
container_start_page | 182 |
container_title | |
container_volume | |
creator | Kun-Seok Oh Yaokai Feng Kaneko, K. Makinouchi, A. Sang-Hyun Bae |
description | Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors. A feature vector is a vector that represents a set of features, and are usually high-dimensional data. The performance of conventional multidimensional data structures (e.g., R-tree family K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. We propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors. The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-organizing maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40,000 images. |
doi_str_mv | 10.1109/DASFAA.2001.916377 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_916377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>916377</ieee_id><sourcerecordid>916377</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-36b35bc5bb290f6b0eb0db56ae8d5c1a95aef5b0fc3ea517d2cb535f2639d4723</originalsourceid><addsrcrecordid>eNotj8FKAzEUAAMiVGt_oKe9esj6kuxLzHGp1gqVgq3nkrd5gcgWJVmE_r1CncvcBkaIpYJWKfAPT_1-3fetBlCtV9Y4dyVuwVmP4L11M7Go9RP-6FAh-htxv9-9SQqVY_Mup8LcpK_S1HzKYyh5OjeFp5L5J4x34jqFsfLi33PxsX4-rDZyu3t5XfVbmZXrJmksGaQBibSHZAmYIBLawI8RBxU8Bk5IkAbDAZWLeiA0mLQ1PnZOm7lYXrqZmY_fJZ9COR8vM-YXmNA_oQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SOM-based R-tree for similarity retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kun-Seok Oh ; Yaokai Feng ; Kaneko, K. ; Makinouchi, A. ; Sang-Hyun Bae</creator><creatorcontrib>Kun-Seok Oh ; Yaokai Feng ; Kaneko, K. ; Makinouchi, A. ; Sang-Hyun Bae</creatorcontrib><description>Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors. A feature vector is a vector that represents a set of features, and are usually high-dimensional data. The performance of conventional multidimensional data structures (e.g., R-tree family K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. We propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors. The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-organizing maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40,000 images.</description><identifier>ISBN: 0769509967</identifier><identifier>ISBN: 9780769509969</identifier><identifier>DOI: 10.1109/DASFAA.2001.916377</identifier><language>eng</language><publisher>IEEE</publisher><subject>Histograms ; Image retrieval ; Indexing ; Multidimensional systems ; Multimedia databases ; Music information retrieval ; Self organizing feature maps ; Shape ; Topology ; Tree data structures</subject><ispartof>Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001, 2001, p.182-189</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/916377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/916377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kun-Seok Oh</creatorcontrib><creatorcontrib>Yaokai Feng</creatorcontrib><creatorcontrib>Kaneko, K.</creatorcontrib><creatorcontrib>Makinouchi, A.</creatorcontrib><creatorcontrib>Sang-Hyun Bae</creatorcontrib><title>SOM-based R-tree for similarity retrieval</title><title>Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001</title><addtitle>DASFAA</addtitle><description>Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors. A feature vector is a vector that represents a set of features, and are usually high-dimensional data. The performance of conventional multidimensional data structures (e.g., R-tree family K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. We propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors. The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-organizing maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40,000 images.</description><subject>Histograms</subject><subject>Image retrieval</subject><subject>Indexing</subject><subject>Multidimensional systems</subject><subject>Multimedia databases</subject><subject>Music information retrieval</subject><subject>Self organizing feature maps</subject><subject>Shape</subject><subject>Topology</subject><subject>Tree data structures</subject><isbn>0769509967</isbn><isbn>9780769509969</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKAzEUAAMiVGt_oKe9esj6kuxLzHGp1gqVgq3nkrd5gcgWJVmE_r1CncvcBkaIpYJWKfAPT_1-3fetBlCtV9Y4dyVuwVmP4L11M7Go9RP-6FAh-htxv9-9SQqVY_Mup8LcpK_S1HzKYyh5OjeFp5L5J4x34jqFsfLi33PxsX4-rDZyu3t5XfVbmZXrJmksGaQBibSHZAmYIBLawI8RBxU8Bk5IkAbDAZWLeiA0mLQ1PnZOm7lYXrqZmY_fJZ9COR8vM-YXmNA_oQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Kun-Seok Oh</creator><creator>Yaokai Feng</creator><creator>Kaneko, K.</creator><creator>Makinouchi, A.</creator><creator>Sang-Hyun Bae</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>SOM-based R-tree for similarity retrieval</title><author>Kun-Seok Oh ; Yaokai Feng ; Kaneko, K. ; Makinouchi, A. ; Sang-Hyun Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-36b35bc5bb290f6b0eb0db56ae8d5c1a95aef5b0fc3ea517d2cb535f2639d4723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Histograms</topic><topic>Image retrieval</topic><topic>Indexing</topic><topic>Multidimensional systems</topic><topic>Multimedia databases</topic><topic>Music information retrieval</topic><topic>Self organizing feature maps</topic><topic>Shape</topic><topic>Topology</topic><topic>Tree data structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Kun-Seok Oh</creatorcontrib><creatorcontrib>Yaokai Feng</creatorcontrib><creatorcontrib>Kaneko, K.</creatorcontrib><creatorcontrib>Makinouchi, A.</creatorcontrib><creatorcontrib>Sang-Hyun Bae</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kun-Seok Oh</au><au>Yaokai Feng</au><au>Kaneko, K.</au><au>Makinouchi, A.</au><au>Sang-Hyun Bae</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SOM-based R-tree for similarity retrieval</atitle><btitle>Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001</btitle><stitle>DASFAA</stitle><date>2001</date><risdate>2001</risdate><spage>182</spage><epage>189</epage><pages>182-189</pages><isbn>0769509967</isbn><isbn>9780769509969</isbn><abstract>Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors. A feature vector is a vector that represents a set of features, and are usually high-dimensional data. The performance of conventional multidimensional data structures (e.g., R-tree family K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. We propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors. The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-organizing maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40,000 images.</abstract><pub>IEEE</pub><doi>10.1109/DASFAA.2001.916377</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769509967 |
ispartof | Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001, 2001, p.182-189 |
issn | |
language | eng |
recordid | cdi_ieee_primary_916377 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Histograms Image retrieval Indexing Multidimensional systems Multimedia databases Music information retrieval Self organizing feature maps Shape Topology Tree data structures |
title | SOM-based R-tree for similarity retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SOM-based%20R-tree%20for%20similarity%20retrieval&rft.btitle=Proceedings%20Seventh%20International%20Conference%20on%20Database%20Systems%20for%20Advanced%20Applications.%20DASFAA%202001&rft.au=Kun-Seok%20Oh&rft.date=2001&rft.spage=182&rft.epage=189&rft.pages=182-189&rft.isbn=0769509967&rft.isbn_list=9780769509969&rft_id=info:doi/10.1109/DASFAA.2001.916377&rft_dat=%3Cieee_6IE%3E916377%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=916377&rfr_iscdi=true |