SOM-based R-tree for similarity retrieval

Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kun-Seok Oh, Yaokai Feng, Kaneko, K., Makinouchi, A., Sang-Hyun Bae
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue
container_start_page 182
container_title
container_volume
creator Kun-Seok Oh
Yaokai Feng
Kaneko, K.
Makinouchi, A.
Sang-Hyun Bae
description Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors. A feature vector is a vector that represents a set of features, and are usually high-dimensional data. The performance of conventional multidimensional data structures (e.g., R-tree family K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. We propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors. The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-organizing maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40,000 images.
doi_str_mv 10.1109/DASFAA.2001.916377
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_916377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>916377</ieee_id><sourcerecordid>916377</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-36b35bc5bb290f6b0eb0db56ae8d5c1a95aef5b0fc3ea517d2cb535f2639d4723</originalsourceid><addsrcrecordid>eNotj8FKAzEUAAMiVGt_oKe9esj6kuxLzHGp1gqVgq3nkrd5gcgWJVmE_r1CncvcBkaIpYJWKfAPT_1-3fetBlCtV9Y4dyVuwVmP4L11M7Go9RP-6FAh-htxv9-9SQqVY_Mup8LcpK_S1HzKYyh5OjeFp5L5J4x34jqFsfLi33PxsX4-rDZyu3t5XfVbmZXrJmksGaQBibSHZAmYIBLawI8RBxU8Bk5IkAbDAZWLeiA0mLQ1PnZOm7lYXrqZmY_fJZ9COR8vM-YXmNA_oQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SOM-based R-tree for similarity retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kun-Seok Oh ; Yaokai Feng ; Kaneko, K. ; Makinouchi, A. ; Sang-Hyun Bae</creator><creatorcontrib>Kun-Seok Oh ; Yaokai Feng ; Kaneko, K. ; Makinouchi, A. ; Sang-Hyun Bae</creatorcontrib><description>Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors. A feature vector is a vector that represents a set of features, and are usually high-dimensional data. The performance of conventional multidimensional data structures (e.g., R-tree family K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. We propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors. The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-organizing maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40,000 images.</description><identifier>ISBN: 0769509967</identifier><identifier>ISBN: 9780769509969</identifier><identifier>DOI: 10.1109/DASFAA.2001.916377</identifier><language>eng</language><publisher>IEEE</publisher><subject>Histograms ; Image retrieval ; Indexing ; Multidimensional systems ; Multimedia databases ; Music information retrieval ; Self organizing feature maps ; Shape ; Topology ; Tree data structures</subject><ispartof>Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001, 2001, p.182-189</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/916377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/916377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kun-Seok Oh</creatorcontrib><creatorcontrib>Yaokai Feng</creatorcontrib><creatorcontrib>Kaneko, K.</creatorcontrib><creatorcontrib>Makinouchi, A.</creatorcontrib><creatorcontrib>Sang-Hyun Bae</creatorcontrib><title>SOM-based R-tree for similarity retrieval</title><title>Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001</title><addtitle>DASFAA</addtitle><description>Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors. A feature vector is a vector that represents a set of features, and are usually high-dimensional data. The performance of conventional multidimensional data structures (e.g., R-tree family K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. We propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors. The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-organizing maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40,000 images.</description><subject>Histograms</subject><subject>Image retrieval</subject><subject>Indexing</subject><subject>Multidimensional systems</subject><subject>Multimedia databases</subject><subject>Music information retrieval</subject><subject>Self organizing feature maps</subject><subject>Shape</subject><subject>Topology</subject><subject>Tree data structures</subject><isbn>0769509967</isbn><isbn>9780769509969</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKAzEUAAMiVGt_oKe9esj6kuxLzHGp1gqVgq3nkrd5gcgWJVmE_r1CncvcBkaIpYJWKfAPT_1-3fetBlCtV9Y4dyVuwVmP4L11M7Go9RP-6FAh-htxv9-9SQqVY_Mup8LcpK_S1HzKYyh5OjeFp5L5J4x34jqFsfLi33PxsX4-rDZyu3t5XfVbmZXrJmksGaQBibSHZAmYIBLawI8RBxU8Bk5IkAbDAZWLeiA0mLQ1PnZOm7lYXrqZmY_fJZ9COR8vM-YXmNA_oQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Kun-Seok Oh</creator><creator>Yaokai Feng</creator><creator>Kaneko, K.</creator><creator>Makinouchi, A.</creator><creator>Sang-Hyun Bae</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2001</creationdate><title>SOM-based R-tree for similarity retrieval</title><author>Kun-Seok Oh ; Yaokai Feng ; Kaneko, K. ; Makinouchi, A. ; Sang-Hyun Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-36b35bc5bb290f6b0eb0db56ae8d5c1a95aef5b0fc3ea517d2cb535f2639d4723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Histograms</topic><topic>Image retrieval</topic><topic>Indexing</topic><topic>Multidimensional systems</topic><topic>Multimedia databases</topic><topic>Music information retrieval</topic><topic>Self organizing feature maps</topic><topic>Shape</topic><topic>Topology</topic><topic>Tree data structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Kun-Seok Oh</creatorcontrib><creatorcontrib>Yaokai Feng</creatorcontrib><creatorcontrib>Kaneko, K.</creatorcontrib><creatorcontrib>Makinouchi, A.</creatorcontrib><creatorcontrib>Sang-Hyun Bae</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kun-Seok Oh</au><au>Yaokai Feng</au><au>Kaneko, K.</au><au>Makinouchi, A.</au><au>Sang-Hyun Bae</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SOM-based R-tree for similarity retrieval</atitle><btitle>Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001</btitle><stitle>DASFAA</stitle><date>2001</date><risdate>2001</risdate><spage>182</spage><epage>189</epage><pages>182-189</pages><isbn>0769509967</isbn><isbn>9780769509969</isbn><abstract>Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e.g., documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors. A feature vector is a vector that represents a set of features, and are usually high-dimensional data. The performance of conventional multidimensional data structures (e.g., R-tree family K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. We propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors. The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-organizing maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40,000 images.</abstract><pub>IEEE</pub><doi>10.1109/DASFAA.2001.916377</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769509967
ispartof Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001, 2001, p.182-189
issn
language eng
recordid cdi_ieee_primary_916377
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Histograms
Image retrieval
Indexing
Multidimensional systems
Multimedia databases
Music information retrieval
Self organizing feature maps
Shape
Topology
Tree data structures
title SOM-based R-tree for similarity retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SOM-based%20R-tree%20for%20similarity%20retrieval&rft.btitle=Proceedings%20Seventh%20International%20Conference%20on%20Database%20Systems%20for%20Advanced%20Applications.%20DASFAA%202001&rft.au=Kun-Seok%20Oh&rft.date=2001&rft.spage=182&rft.epage=189&rft.pages=182-189&rft.isbn=0769509967&rft.isbn_list=9780769509969&rft_id=info:doi/10.1109/DASFAA.2001.916377&rft_dat=%3Cieee_6IE%3E916377%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=916377&rfr_iscdi=true