From IC Layout to Die Photograph: A CNN-Based Data-Driven Approach
We propose a deep learning-based data-driven framework consisting of two convolutional neural networks: 1) LithoNet that predicts the shape deformations on a circuit due to IC fabrication and 2) OPCNet that suggests IC layout corrections to compensate for such shape deformations. By learning the sha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2021-05, Vol.40 (5), p.957-970 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 970 |
---|---|
container_issue | 5 |
container_start_page | 957 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 40 |
creator | Shao, Hao-Chiang Peng, Chao-Yi Wu, Jun-Rei Lin, Chia-Wen Fang, Shao-Yun Tsai, Pin-Yian Liu, Yan-Hsiu |
description | We propose a deep learning-based data-driven framework consisting of two convolutional neural networks: 1) LithoNet that predicts the shape deformations on a circuit due to IC fabrication and 2) OPCNet that suggests IC layout corrections to compensate for such shape deformations. By learning the shape correspondences between pairs of layout design patterns and their scanning electron microscope (SEM) images of the product wafer thereof, given an IC layout pattern, LithoNet can mimic the fabrication process to predict its fabricated circuit shape. Furthermore, LithoNet can take the wafer fabrication parameters as a latent vector to model the parametric product variations that can be inspected on SEM images. Besides, traditional optical proximity correction (OPC) methods used to suggest a correction on a lithographic photomask is computationally expensive. Our proposed OPCNet mimics the OPC procedure and efficiently generates a corrected photomask by collaborating with LithoNet to examine if the shape of a fabricated circuit optimally matches its original layout design. As a result, the proposed LithoNet-OPCNet framework can not only predict the shape of a fabricated IC from its layout pattern but also suggests a layout correction according to the consistency between the predicted shape and the given layout. Experimental results with several benchmark layout patterns demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TCAD.2020.3015469 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9163418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9163418</ieee_id><sourcerecordid>2515852948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f6d668508ad08e940dba29b24ce4b35e5d8bd33f9cfa35843fa8714f0f2a01ac3</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqXwAxCLJeaU56_EZksTCpWqwlBmy0lsmorWwU6R-u9J1YrpLefeq3cQuicwIQTU06rIywkFChMGRPBUXaARUSxLOBHkEo2AZjIByOAa3cS4ASBcUDVC01nwWzwv8MIc_L7Hvcdla_HH2vf-K5hu_YxzXCyXydRE2-DS9CYpQ_trdzjvuuBNvb5FV858R3t3vmP0OXtZFW_J4v11XuSLpKaK9YlLmzSVAqRpQFrFoakMVRXlteUVE1Y0smoYc6p2hgnJmTMyI9yBowaIqdkYPZ56h9mfvY293vh92A2Tmgoi5PAPlwNFTlQdfIzBOt2FdmvCQRPQR1X6qEofVemzqiHzcMq01tp_XpGUcSLZHzcSYks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515852948</pqid></control><display><type>article</type><title>From IC Layout to Die Photograph: A CNN-Based Data-Driven Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Hao-Chiang ; Peng, Chao-Yi ; Wu, Jun-Rei ; Lin, Chia-Wen ; Fang, Shao-Yun ; Tsai, Pin-Yian ; Liu, Yan-Hsiu</creator><creatorcontrib>Shao, Hao-Chiang ; Peng, Chao-Yi ; Wu, Jun-Rei ; Lin, Chia-Wen ; Fang, Shao-Yun ; Tsai, Pin-Yian ; Liu, Yan-Hsiu</creatorcontrib><description>We propose a deep learning-based data-driven framework consisting of two convolutional neural networks: 1) LithoNet that predicts the shape deformations on a circuit due to IC fabrication and 2) OPCNet that suggests IC layout corrections to compensate for such shape deformations. By learning the shape correspondences between pairs of layout design patterns and their scanning electron microscope (SEM) images of the product wafer thereof, given an IC layout pattern, LithoNet can mimic the fabrication process to predict its fabricated circuit shape. Furthermore, LithoNet can take the wafer fabrication parameters as a latent vector to model the parametric product variations that can be inspected on SEM images. Besides, traditional optical proximity correction (OPC) methods used to suggest a correction on a lithographic photomask is computationally expensive. Our proposed OPCNet mimics the OPC procedure and efficiently generates a corrected photomask by collaborating with LithoNet to examine if the shape of a fabricated circuit optimally matches its original layout design. As a result, the proposed LithoNet-OPCNet framework can not only predict the shape of a fabricated IC from its layout pattern but also suggests a layout correction according to the consistency between the predicted shape and the given layout. Experimental results with several benchmark layout patterns demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2020.3015469</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Circuit design ; Computational modeling ; Convolutional neural networks (CNNs) ; Deformation ; design for manufacturability ; Fabrication ; Integrated circuit modeling ; Integrated circuits ; Layout ; Layouts ; Lithography ; lithography simulation ; optical proximity correction (OPC) ; Scanning electron microscopy ; Shape ; virtual metrology (VM)</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2021-05, Vol.40 (5), p.957-970</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f6d668508ad08e940dba29b24ce4b35e5d8bd33f9cfa35843fa8714f0f2a01ac3</citedby><cites>FETCH-LOGICAL-c293t-f6d668508ad08e940dba29b24ce4b35e5d8bd33f9cfa35843fa8714f0f2a01ac3</cites><orcidid>0000-0002-9097-2318 ; 0000-0002-3749-234X ; 0000-0001-6675-2676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9163418$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9163418$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shao, Hao-Chiang</creatorcontrib><creatorcontrib>Peng, Chao-Yi</creatorcontrib><creatorcontrib>Wu, Jun-Rei</creatorcontrib><creatorcontrib>Lin, Chia-Wen</creatorcontrib><creatorcontrib>Fang, Shao-Yun</creatorcontrib><creatorcontrib>Tsai, Pin-Yian</creatorcontrib><creatorcontrib>Liu, Yan-Hsiu</creatorcontrib><title>From IC Layout to Die Photograph: A CNN-Based Data-Driven Approach</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>We propose a deep learning-based data-driven framework consisting of two convolutional neural networks: 1) LithoNet that predicts the shape deformations on a circuit due to IC fabrication and 2) OPCNet that suggests IC layout corrections to compensate for such shape deformations. By learning the shape correspondences between pairs of layout design patterns and their scanning electron microscope (SEM) images of the product wafer thereof, given an IC layout pattern, LithoNet can mimic the fabrication process to predict its fabricated circuit shape. Furthermore, LithoNet can take the wafer fabrication parameters as a latent vector to model the parametric product variations that can be inspected on SEM images. Besides, traditional optical proximity correction (OPC) methods used to suggest a correction on a lithographic photomask is computationally expensive. Our proposed OPCNet mimics the OPC procedure and efficiently generates a corrected photomask by collaborating with LithoNet to examine if the shape of a fabricated circuit optimally matches its original layout design. As a result, the proposed LithoNet-OPCNet framework can not only predict the shape of a fabricated IC from its layout pattern but also suggests a layout correction according to the consistency between the predicted shape and the given layout. Experimental results with several benchmark layout patterns demonstrate the effectiveness of the proposed method.</description><subject>Artificial neural networks</subject><subject>Circuit design</subject><subject>Computational modeling</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Deformation</subject><subject>design for manufacturability</subject><subject>Fabrication</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Layout</subject><subject>Layouts</subject><subject>Lithography</subject><subject>lithography simulation</subject><subject>optical proximity correction (OPC)</subject><subject>Scanning electron microscopy</subject><subject>Shape</subject><subject>virtual metrology (VM)</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAURS0EEqXwAxCLJeaU56_EZksTCpWqwlBmy0lsmorWwU6R-u9J1YrpLefeq3cQuicwIQTU06rIywkFChMGRPBUXaARUSxLOBHkEo2AZjIByOAa3cS4ASBcUDVC01nwWzwv8MIc_L7Hvcdla_HH2vf-K5hu_YxzXCyXydRE2-DS9CYpQ_trdzjvuuBNvb5FV858R3t3vmP0OXtZFW_J4v11XuSLpKaK9YlLmzSVAqRpQFrFoakMVRXlteUVE1Y0smoYc6p2hgnJmTMyI9yBowaIqdkYPZ56h9mfvY293vh92A2Tmgoi5PAPlwNFTlQdfIzBOt2FdmvCQRPQR1X6qEofVemzqiHzcMq01tp_XpGUcSLZHzcSYks</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Shao, Hao-Chiang</creator><creator>Peng, Chao-Yi</creator><creator>Wu, Jun-Rei</creator><creator>Lin, Chia-Wen</creator><creator>Fang, Shao-Yun</creator><creator>Tsai, Pin-Yian</creator><creator>Liu, Yan-Hsiu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9097-2318</orcidid><orcidid>https://orcid.org/0000-0002-3749-234X</orcidid><orcidid>https://orcid.org/0000-0001-6675-2676</orcidid></search><sort><creationdate>20210501</creationdate><title>From IC Layout to Die Photograph: A CNN-Based Data-Driven Approach</title><author>Shao, Hao-Chiang ; Peng, Chao-Yi ; Wu, Jun-Rei ; Lin, Chia-Wen ; Fang, Shao-Yun ; Tsai, Pin-Yian ; Liu, Yan-Hsiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f6d668508ad08e940dba29b24ce4b35e5d8bd33f9cfa35843fa8714f0f2a01ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Circuit design</topic><topic>Computational modeling</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Deformation</topic><topic>design for manufacturability</topic><topic>Fabrication</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Layout</topic><topic>Layouts</topic><topic>Lithography</topic><topic>lithography simulation</topic><topic>optical proximity correction (OPC)</topic><topic>Scanning electron microscopy</topic><topic>Shape</topic><topic>virtual metrology (VM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Hao-Chiang</creatorcontrib><creatorcontrib>Peng, Chao-Yi</creatorcontrib><creatorcontrib>Wu, Jun-Rei</creatorcontrib><creatorcontrib>Lin, Chia-Wen</creatorcontrib><creatorcontrib>Fang, Shao-Yun</creatorcontrib><creatorcontrib>Tsai, Pin-Yian</creatorcontrib><creatorcontrib>Liu, Yan-Hsiu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shao, Hao-Chiang</au><au>Peng, Chao-Yi</au><au>Wu, Jun-Rei</au><au>Lin, Chia-Wen</au><au>Fang, Shao-Yun</au><au>Tsai, Pin-Yian</au><au>Liu, Yan-Hsiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From IC Layout to Die Photograph: A CNN-Based Data-Driven Approach</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>957</spage><epage>970</epage><pages>957-970</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>We propose a deep learning-based data-driven framework consisting of two convolutional neural networks: 1) LithoNet that predicts the shape deformations on a circuit due to IC fabrication and 2) OPCNet that suggests IC layout corrections to compensate for such shape deformations. By learning the shape correspondences between pairs of layout design patterns and their scanning electron microscope (SEM) images of the product wafer thereof, given an IC layout pattern, LithoNet can mimic the fabrication process to predict its fabricated circuit shape. Furthermore, LithoNet can take the wafer fabrication parameters as a latent vector to model the parametric product variations that can be inspected on SEM images. Besides, traditional optical proximity correction (OPC) methods used to suggest a correction on a lithographic photomask is computationally expensive. Our proposed OPCNet mimics the OPC procedure and efficiently generates a corrected photomask by collaborating with LithoNet to examine if the shape of a fabricated circuit optimally matches its original layout design. As a result, the proposed LithoNet-OPCNet framework can not only predict the shape of a fabricated IC from its layout pattern but also suggests a layout correction according to the consistency between the predicted shape and the given layout. Experimental results with several benchmark layout patterns demonstrate the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2020.3015469</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9097-2318</orcidid><orcidid>https://orcid.org/0000-0002-3749-234X</orcidid><orcidid>https://orcid.org/0000-0001-6675-2676</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2021-05, Vol.40 (5), p.957-970 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_ieee_primary_9163418 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Circuit design Computational modeling Convolutional neural networks (CNNs) Deformation design for manufacturability Fabrication Integrated circuit modeling Integrated circuits Layout Layouts Lithography lithography simulation optical proximity correction (OPC) Scanning electron microscopy Shape virtual metrology (VM) |
title | From IC Layout to Die Photograph: A CNN-Based Data-Driven Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20IC%20Layout%20to%20Die%20Photograph:%20A%20CNN-Based%20Data-Driven%20Approach&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Shao,%20Hao-Chiang&rft.date=2021-05-01&rft.volume=40&rft.issue=5&rft.spage=957&rft.epage=970&rft.pages=957-970&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2020.3015469&rft_dat=%3Cproquest_RIE%3E2515852948%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515852948&rft_id=info:pmid/&rft_ieee_id=9163418&rfr_iscdi=true |