Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints

This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2021-03, Vol.36 (2), p.1229-1238
Hauptverfasser: Mediwaththe, Chathurika P., Blackhall, Lachlan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 2
container_start_page 1229
container_title IEEE transactions on power systems
container_volume 36
creator Mediwaththe, Chathurika P.
Blackhall, Lachlan
description This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized energy trading system between a CES provider and users with rooftop PV systems. By leveraging a linearized branch flow model for radial distribution networks, a voltage-constrained leader-follower Stackelberg game is developed wherein the CES provider maximizes revenue and the users minimize their personal energy costs by trading energy with the CES system and the grid. The Stackelberg game has a unique equilibrium at which the CES provider maximizes revenue and the users minimize energy costs at a unique Nash equilibrium. A case study, with realistic PV power generation and demand data, confirms that the energy trading system can reduce peak energy demand and prevent network voltage excursions, while delivering financial benefits to the users and the CES provider. Further, simulations highlight that, in comparison with a centralized system, the decentralized energy trading system provides greater economic benefits to the users with less energy storage capacity.
doi_str_mv 10.1109/TPWRS.2020.3015218
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9163282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9163282</ieee_id><sourcerecordid>2492860146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-bcde7eefe3b05cd64efa4e206c8fc8b04256eff369fc51b861216d33a3248e513</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFj9h1llVpAak8RApdRk4yKSmNU2xHVf6ehFasRpp77ox0ELqmZEQpie6Wb6v3eMQIIyNOqGBUnaABFUIFRI6jUzQgSolARYKcowvnNoQQ2QUD1LyA39f2O5jstQV8D5U2eRCXOeBnbfQaKjAez62uoMfwqvRfeIKndVU1pvQtnhmw6xbHvrYdjePWeai63Ljuhi3NGn_WW99H_c5bXRrvLtFZobcOro5ziD7ms-X0MVi8PjxNJ4sgY5HwQZrlMAYogKdEZLkModAhMCIzVWQqJSETEoqCy6jIBE2VpIzKnHPNWahAUD5Et4e7O1v_NOB8sqkba7qXCQsjpiShoewodqAyWztnoUh2tqy0bRNKkl5v8qc36fUmR71d6eZQKgHgvxBRyZli_BcAvHjJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492860146</pqid></control><display><type>article</type><title>Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Mediwaththe, Chathurika P. ; Blackhall, Lachlan</creator><creatorcontrib>Mediwaththe, Chathurika P. ; Blackhall, Lachlan</creatorcontrib><description>This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized energy trading system between a CES provider and users with rooftop PV systems. By leveraging a linearized branch flow model for radial distribution networks, a voltage-constrained leader-follower Stackelberg game is developed wherein the CES provider maximizes revenue and the users minimize their personal energy costs by trading energy with the CES system and the grid. The Stackelberg game has a unique equilibrium at which the CES provider maximizes revenue and the users minimize energy costs at a unique Nash equilibrium. A case study, with realistic PV power generation and demand data, confirms that the energy trading system can reduce peak energy demand and prevent network voltage excursions, while delivering financial benefits to the users and the CES provider. Further, simulations highlight that, in comparison with a centralized system, the decentralized energy trading system provides greater economic benefits to the users with less energy storage capacity.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2020.3015218</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Community energy storage ; Constraints ; Demand-side management ; distribution network ; Economics ; Electric potential ; Electric power demand ; Electric power generation ; Energy ; Energy costs ; Energy management ; Energy storage ; Feasibility studies ; Game theory ; Games ; Indexes ; Peak load ; Photovoltaic cells ; photovoltaic power generation ; power flow ; Power generation ; Radial distribution ; Reactive power ; Revenue ; Roofs ; Storage capacity ; Voltage ; voltage regulation</subject><ispartof>IEEE transactions on power systems, 2021-03, Vol.36 (2), p.1229-1238</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-bcde7eefe3b05cd64efa4e206c8fc8b04256eff369fc51b861216d33a3248e513</citedby><cites>FETCH-LOGICAL-c295t-bcde7eefe3b05cd64efa4e206c8fc8b04256eff369fc51b861216d33a3248e513</cites><orcidid>0000-0001-7273-9101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9163282$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9163282$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mediwaththe, Chathurika P.</creatorcontrib><creatorcontrib>Blackhall, Lachlan</creatorcontrib><title>Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized energy trading system between a CES provider and users with rooftop PV systems. By leveraging a linearized branch flow model for radial distribution networks, a voltage-constrained leader-follower Stackelberg game is developed wherein the CES provider maximizes revenue and the users minimize their personal energy costs by trading energy with the CES system and the grid. The Stackelberg game has a unique equilibrium at which the CES provider maximizes revenue and the users minimize energy costs at a unique Nash equilibrium. A case study, with realistic PV power generation and demand data, confirms that the energy trading system can reduce peak energy demand and prevent network voltage excursions, while delivering financial benefits to the users and the CES provider. Further, simulations highlight that, in comparison with a centralized system, the decentralized energy trading system provides greater economic benefits to the users with less energy storage capacity.</description><subject>Community energy storage</subject><subject>Constraints</subject><subject>Demand-side management</subject><subject>distribution network</subject><subject>Economics</subject><subject>Electric potential</subject><subject>Electric power demand</subject><subject>Electric power generation</subject><subject>Energy</subject><subject>Energy costs</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Feasibility studies</subject><subject>Game theory</subject><subject>Games</subject><subject>Indexes</subject><subject>Peak load</subject><subject>Photovoltaic cells</subject><subject>photovoltaic power generation</subject><subject>power flow</subject><subject>Power generation</subject><subject>Radial distribution</subject><subject>Reactive power</subject><subject>Revenue</subject><subject>Roofs</subject><subject>Storage capacity</subject><subject>Voltage</subject><subject>voltage regulation</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFj9h1llVpAak8RApdRk4yKSmNU2xHVf6ehFasRpp77ox0ELqmZEQpie6Wb6v3eMQIIyNOqGBUnaABFUIFRI6jUzQgSolARYKcowvnNoQQ2QUD1LyA39f2O5jstQV8D5U2eRCXOeBnbfQaKjAez62uoMfwqvRfeIKndVU1pvQtnhmw6xbHvrYdjePWeai63Ljuhi3NGn_WW99H_c5bXRrvLtFZobcOro5ziD7ms-X0MVi8PjxNJ4sgY5HwQZrlMAYogKdEZLkModAhMCIzVWQqJSETEoqCy6jIBE2VpIzKnHPNWahAUD5Et4e7O1v_NOB8sqkba7qXCQsjpiShoewodqAyWztnoUh2tqy0bRNKkl5v8qc36fUmR71d6eZQKgHgvxBRyZli_BcAvHjJ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Mediwaththe, Chathurika P.</creator><creator>Blackhall, Lachlan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7273-9101</orcidid></search><sort><creationdate>202103</creationdate><title>Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints</title><author>Mediwaththe, Chathurika P. ; Blackhall, Lachlan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-bcde7eefe3b05cd64efa4e206c8fc8b04256eff369fc51b861216d33a3248e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Community energy storage</topic><topic>Constraints</topic><topic>Demand-side management</topic><topic>distribution network</topic><topic>Economics</topic><topic>Electric potential</topic><topic>Electric power demand</topic><topic>Electric power generation</topic><topic>Energy</topic><topic>Energy costs</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Feasibility studies</topic><topic>Game theory</topic><topic>Games</topic><topic>Indexes</topic><topic>Peak load</topic><topic>Photovoltaic cells</topic><topic>photovoltaic power generation</topic><topic>power flow</topic><topic>Power generation</topic><topic>Radial distribution</topic><topic>Reactive power</topic><topic>Revenue</topic><topic>Roofs</topic><topic>Storage capacity</topic><topic>Voltage</topic><topic>voltage regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mediwaththe, Chathurika P.</creatorcontrib><creatorcontrib>Blackhall, Lachlan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mediwaththe, Chathurika P.</au><au>Blackhall, Lachlan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-03</date><risdate>2021</risdate><volume>36</volume><issue>2</issue><spage>1229</spage><epage>1238</epage><pages>1229-1238</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized energy trading system between a CES provider and users with rooftop PV systems. By leveraging a linearized branch flow model for radial distribution networks, a voltage-constrained leader-follower Stackelberg game is developed wherein the CES provider maximizes revenue and the users minimize their personal energy costs by trading energy with the CES system and the grid. The Stackelberg game has a unique equilibrium at which the CES provider maximizes revenue and the users minimize energy costs at a unique Nash equilibrium. A case study, with realistic PV power generation and demand data, confirms that the energy trading system can reduce peak energy demand and prevent network voltage excursions, while delivering financial benefits to the users and the CES provider. Further, simulations highlight that, in comparison with a centralized system, the decentralized energy trading system provides greater economic benefits to the users with less energy storage capacity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2020.3015218</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7273-9101</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2021-03, Vol.36 (2), p.1229-1238
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_9163282
source IEEE Electronic Library (IEL)
subjects Community energy storage
Constraints
Demand-side management
distribution network
Economics
Electric potential
Electric power demand
Electric power generation
Energy
Energy costs
Energy management
Energy storage
Feasibility studies
Game theory
Games
Indexes
Peak load
Photovoltaic cells
photovoltaic power generation
power flow
Power generation
Radial distribution
Reactive power
Revenue
Roofs
Storage capacity
Voltage
voltage regulation
title Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network-Aware%20Demand-Side%20Management%20Framework%20With%20A%20Community%20Energy%20Storage%20System%20Considering%20Voltage%20Constraints&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Mediwaththe,%20Chathurika%20P.&rft.date=2021-03&rft.volume=36&rft.issue=2&rft.spage=1229&rft.epage=1238&rft.pages=1229-1238&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2020.3015218&rft_dat=%3Cproquest_RIE%3E2492860146%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492860146&rft_id=info:pmid/&rft_ieee_id=9163282&rfr_iscdi=true