Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints
This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2021-03, Vol.36 (2), p.1229-1238 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1238 |
---|---|
container_issue | 2 |
container_start_page | 1229 |
container_title | IEEE transactions on power systems |
container_volume | 36 |
creator | Mediwaththe, Chathurika P. Blackhall, Lachlan |
description | This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized energy trading system between a CES provider and users with rooftop PV systems. By leveraging a linearized branch flow model for radial distribution networks, a voltage-constrained leader-follower Stackelberg game is developed wherein the CES provider maximizes revenue and the users minimize their personal energy costs by trading energy with the CES system and the grid. The Stackelberg game has a unique equilibrium at which the CES provider maximizes revenue and the users minimize energy costs at a unique Nash equilibrium. A case study, with realistic PV power generation and demand data, confirms that the energy trading system can reduce peak energy demand and prevent network voltage excursions, while delivering financial benefits to the users and the CES provider. Further, simulations highlight that, in comparison with a centralized system, the decentralized energy trading system provides greater economic benefits to the users with less energy storage capacity. |
doi_str_mv | 10.1109/TPWRS.2020.3015218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9163282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9163282</ieee_id><sourcerecordid>2492860146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-bcde7eefe3b05cd64efa4e206c8fc8b04256eff369fc51b861216d33a3248e513</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFj9h1llVpAak8RApdRk4yKSmNU2xHVf6ehFasRpp77ox0ELqmZEQpie6Wb6v3eMQIIyNOqGBUnaABFUIFRI6jUzQgSolARYKcowvnNoQQ2QUD1LyA39f2O5jstQV8D5U2eRCXOeBnbfQaKjAez62uoMfwqvRfeIKndVU1pvQtnhmw6xbHvrYdjePWeai63Ljuhi3NGn_WW99H_c5bXRrvLtFZobcOro5ziD7ms-X0MVi8PjxNJ4sgY5HwQZrlMAYogKdEZLkModAhMCIzVWQqJSETEoqCy6jIBE2VpIzKnHPNWahAUD5Et4e7O1v_NOB8sqkba7qXCQsjpiShoewodqAyWztnoUh2tqy0bRNKkl5v8qc36fUmR71d6eZQKgHgvxBRyZli_BcAvHjJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492860146</pqid></control><display><type>article</type><title>Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Mediwaththe, Chathurika P. ; Blackhall, Lachlan</creator><creatorcontrib>Mediwaththe, Chathurika P. ; Blackhall, Lachlan</creatorcontrib><description>This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized energy trading system between a CES provider and users with rooftop PV systems. By leveraging a linearized branch flow model for radial distribution networks, a voltage-constrained leader-follower Stackelberg game is developed wherein the CES provider maximizes revenue and the users minimize their personal energy costs by trading energy with the CES system and the grid. The Stackelberg game has a unique equilibrium at which the CES provider maximizes revenue and the users minimize energy costs at a unique Nash equilibrium. A case study, with realistic PV power generation and demand data, confirms that the energy trading system can reduce peak energy demand and prevent network voltage excursions, while delivering financial benefits to the users and the CES provider. Further, simulations highlight that, in comparison with a centralized system, the decentralized energy trading system provides greater economic benefits to the users with less energy storage capacity.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2020.3015218</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Community energy storage ; Constraints ; Demand-side management ; distribution network ; Economics ; Electric potential ; Electric power demand ; Electric power generation ; Energy ; Energy costs ; Energy management ; Energy storage ; Feasibility studies ; Game theory ; Games ; Indexes ; Peak load ; Photovoltaic cells ; photovoltaic power generation ; power flow ; Power generation ; Radial distribution ; Reactive power ; Revenue ; Roofs ; Storage capacity ; Voltage ; voltage regulation</subject><ispartof>IEEE transactions on power systems, 2021-03, Vol.36 (2), p.1229-1238</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-bcde7eefe3b05cd64efa4e206c8fc8b04256eff369fc51b861216d33a3248e513</citedby><cites>FETCH-LOGICAL-c295t-bcde7eefe3b05cd64efa4e206c8fc8b04256eff369fc51b861216d33a3248e513</cites><orcidid>0000-0001-7273-9101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9163282$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9163282$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mediwaththe, Chathurika P.</creatorcontrib><creatorcontrib>Blackhall, Lachlan</creatorcontrib><title>Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized energy trading system between a CES provider and users with rooftop PV systems. By leveraging a linearized branch flow model for radial distribution networks, a voltage-constrained leader-follower Stackelberg game is developed wherein the CES provider maximizes revenue and the users minimize their personal energy costs by trading energy with the CES system and the grid. The Stackelberg game has a unique equilibrium at which the CES provider maximizes revenue and the users minimize energy costs at a unique Nash equilibrium. A case study, with realistic PV power generation and demand data, confirms that the energy trading system can reduce peak energy demand and prevent network voltage excursions, while delivering financial benefits to the users and the CES provider. Further, simulations highlight that, in comparison with a centralized system, the decentralized energy trading system provides greater economic benefits to the users with less energy storage capacity.</description><subject>Community energy storage</subject><subject>Constraints</subject><subject>Demand-side management</subject><subject>distribution network</subject><subject>Economics</subject><subject>Electric potential</subject><subject>Electric power demand</subject><subject>Electric power generation</subject><subject>Energy</subject><subject>Energy costs</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Feasibility studies</subject><subject>Game theory</subject><subject>Games</subject><subject>Indexes</subject><subject>Peak load</subject><subject>Photovoltaic cells</subject><subject>photovoltaic power generation</subject><subject>power flow</subject><subject>Power generation</subject><subject>Radial distribution</subject><subject>Reactive power</subject><subject>Revenue</subject><subject>Roofs</subject><subject>Storage capacity</subject><subject>Voltage</subject><subject>voltage regulation</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFj9h1llVpAak8RApdRk4yKSmNU2xHVf6ehFasRpp77ox0ELqmZEQpie6Wb6v3eMQIIyNOqGBUnaABFUIFRI6jUzQgSolARYKcowvnNoQQ2QUD1LyA39f2O5jstQV8D5U2eRCXOeBnbfQaKjAez62uoMfwqvRfeIKndVU1pvQtnhmw6xbHvrYdjePWeai63Ljuhi3NGn_WW99H_c5bXRrvLtFZobcOro5ziD7ms-X0MVi8PjxNJ4sgY5HwQZrlMAYogKdEZLkModAhMCIzVWQqJSETEoqCy6jIBE2VpIzKnHPNWahAUD5Et4e7O1v_NOB8sqkba7qXCQsjpiShoewodqAyWztnoUh2tqy0bRNKkl5v8qc36fUmR71d6eZQKgHgvxBRyZli_BcAvHjJ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Mediwaththe, Chathurika P.</creator><creator>Blackhall, Lachlan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7273-9101</orcidid></search><sort><creationdate>202103</creationdate><title>Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints</title><author>Mediwaththe, Chathurika P. ; Blackhall, Lachlan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-bcde7eefe3b05cd64efa4e206c8fc8b04256eff369fc51b861216d33a3248e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Community energy storage</topic><topic>Constraints</topic><topic>Demand-side management</topic><topic>distribution network</topic><topic>Economics</topic><topic>Electric potential</topic><topic>Electric power demand</topic><topic>Electric power generation</topic><topic>Energy</topic><topic>Energy costs</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Feasibility studies</topic><topic>Game theory</topic><topic>Games</topic><topic>Indexes</topic><topic>Peak load</topic><topic>Photovoltaic cells</topic><topic>photovoltaic power generation</topic><topic>power flow</topic><topic>Power generation</topic><topic>Radial distribution</topic><topic>Reactive power</topic><topic>Revenue</topic><topic>Roofs</topic><topic>Storage capacity</topic><topic>Voltage</topic><topic>voltage regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mediwaththe, Chathurika P.</creatorcontrib><creatorcontrib>Blackhall, Lachlan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mediwaththe, Chathurika P.</au><au>Blackhall, Lachlan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-03</date><risdate>2021</risdate><volume>36</volume><issue>2</issue><spage>1229</spage><epage>1238</epage><pages>1229-1238</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper studies the feasibility of integrating a community energy storage (CES) system with rooftop photovoltaic (PV) power generation for demand-side management of a neighbourhood while maintaining the distribution network voltages within allowed limits. To this end, we develop a decentralized energy trading system between a CES provider and users with rooftop PV systems. By leveraging a linearized branch flow model for radial distribution networks, a voltage-constrained leader-follower Stackelberg game is developed wherein the CES provider maximizes revenue and the users minimize their personal energy costs by trading energy with the CES system and the grid. The Stackelberg game has a unique equilibrium at which the CES provider maximizes revenue and the users minimize energy costs at a unique Nash equilibrium. A case study, with realistic PV power generation and demand data, confirms that the energy trading system can reduce peak energy demand and prevent network voltage excursions, while delivering financial benefits to the users and the CES provider. Further, simulations highlight that, in comparison with a centralized system, the decentralized energy trading system provides greater economic benefits to the users with less energy storage capacity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2020.3015218</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7273-9101</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2021-03, Vol.36 (2), p.1229-1238 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_9163282 |
source | IEEE Electronic Library (IEL) |
subjects | Community energy storage Constraints Demand-side management distribution network Economics Electric potential Electric power demand Electric power generation Energy Energy costs Energy management Energy storage Feasibility studies Game theory Games Indexes Peak load Photovoltaic cells photovoltaic power generation power flow Power generation Radial distribution Reactive power Revenue Roofs Storage capacity Voltage voltage regulation |
title | Network-Aware Demand-Side Management Framework With A Community Energy Storage System Considering Voltage Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network-Aware%20Demand-Side%20Management%20Framework%20With%20A%20Community%20Energy%20Storage%20System%20Considering%20Voltage%20Constraints&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Mediwaththe,%20Chathurika%20P.&rft.date=2021-03&rft.volume=36&rft.issue=2&rft.spage=1229&rft.epage=1238&rft.pages=1229-1238&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2020.3015218&rft_dat=%3Cproquest_RIE%3E2492860146%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492860146&rft_id=info:pmid/&rft_ieee_id=9163282&rfr_iscdi=true |