Closed-loop Magnetization State Control for a Variable-flux Memory Machine
Variable flux memory machines (VFMM) use magnetization and demagnetization manipulations to adjust machine voltage, achieving wide-speed high-efficiency operation. The machine magnetization state manipulation is a critical concern in the VFMM control. Thus, this paper proposes an on-line magnetizati...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Hu, Yusheng Chen, Junhua Qu, Ronghai Chen, Bin Xiao, Yong Li, Xia |
description | Variable flux memory machines (VFMM) use magnetization and demagnetization manipulations to adjust machine voltage, achieving wide-speed high-efficiency operation. The machine magnetization state manipulation is a critical concern in the VFMM control. Thus, this paper proposes an on-line magnetization state estimation and closed-loop control using the magnetization manipulation signals. The magnetization state manipulation requires voltage injection to create the manipulation current. The current shows non-linear response at different magnetization state because the current changes the magnets state and the machine saturation level. The flux change rate, which is calculated by the injected voltage and the current response, is affected by the non-linearity and utilized in the proposed method for the magnetization state estimation. The proposed magnetization state estimation achieves self-sensing characteristic because the signals in the estimation already exist in the magnetization state manipulation. Based on the estimated and the target magnetization state, the closed-loop magnetization state control is achieved by the voltage injection regulation. |
doi_str_mv | 10.1109/ACCESS.2020.3014976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9162119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9162119</ieee_id><doaj_id>oai_doaj_org_article_e77f5d4ab23a42fcb5e59dd9dc89f135</doaj_id><sourcerecordid>2454643370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f8fa13986e6255d9e61d3d978df6807cb213ba18076fea23f84b34d9002a65763</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQXURBqf4CLwHPqfud7LGEqpUWD1WvyyQ7qylptm5SUH-9qZHiXGZ4vPdmmEfINaNTxqi5nRXFfL2ecsrpVFAmTaZPyAVn2qRCCX36bz4nV123oUPlA6SyC_JYNKFDlzYh7JIVvLXY19_Q16FN1j30mBSh7WNoEh9iAskrxBrKBlPf7D-TFW5D_Bpk1Xvd4iU589B0ePXXJ-Tlbv5cPKTLp_tFMVumlaR5n_rcAxMm16i5Us6gZk44k-XO65xmVcmZKIENo_YIXPhclkI6QykHrTItJmQx-roAG7uL9Rbilw1Q218gxDcLsa-rBi1mmVdOQskFSO6rUqEyzhlX5caz4SMTcjN67WL42GPX203Yx3Y433KppJZCZHRgiZFVxdB1Ef1xK6P2kIEdM7CHDOxfBoPqelTViHhUGKY5Y0b8AFwqgXE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454643370</pqid></control><display><type>article</type><title>Closed-loop Magnetization State Control for a Variable-flux Memory Machine</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hu, Yusheng ; Chen, Junhua ; Qu, Ronghai ; Chen, Bin ; Xiao, Yong ; Li, Xia</creator><creatorcontrib>Hu, Yusheng ; Chen, Junhua ; Qu, Ronghai ; Chen, Bin ; Xiao, Yong ; Li, Xia</creatorcontrib><description>Variable flux memory machines (VFMM) use magnetization and demagnetization manipulations to adjust machine voltage, achieving wide-speed high-efficiency operation. The machine magnetization state manipulation is a critical concern in the VFMM control. Thus, this paper proposes an on-line magnetization state estimation and closed-loop control using the magnetization manipulation signals. The magnetization state manipulation requires voltage injection to create the manipulation current. The current shows non-linear response at different magnetization state because the current changes the magnets state and the machine saturation level. The flux change rate, which is calculated by the injected voltage and the current response, is affected by the non-linearity and utilized in the proposed method for the magnetization state estimation. The proposed magnetization state estimation achieves self-sensing characteristic because the signals in the estimation already exist in the magnetization state manipulation. Based on the estimated and the target magnetization state, the closed-loop magnetization state control is achieved by the voltage injection regulation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3014976</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Closed-loop magnetization state control ; Couplings ; Demagnetization ; Electric potential ; Estimation ; Flux ; Linearity ; Magnetization ; Magnetization state estimation ; Magnets ; Mathematical model ; Motor control ; Nonlinear response ; Nonlinearity ; Saturation magnetization ; State estimation ; Variable-flux memory machine ; Voltage ; Voltage control</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f8fa13986e6255d9e61d3d978df6807cb213ba18076fea23f84b34d9002a65763</citedby><cites>FETCH-LOGICAL-c408t-f8fa13986e6255d9e61d3d978df6807cb213ba18076fea23f84b34d9002a65763</cites><orcidid>0000-0001-6375-0990 ; 0000-0001-6401-3271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9162119$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hu, Yusheng</creatorcontrib><creatorcontrib>Chen, Junhua</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Xiao, Yong</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><title>Closed-loop Magnetization State Control for a Variable-flux Memory Machine</title><title>IEEE access</title><addtitle>Access</addtitle><description>Variable flux memory machines (VFMM) use magnetization and demagnetization manipulations to adjust machine voltage, achieving wide-speed high-efficiency operation. The machine magnetization state manipulation is a critical concern in the VFMM control. Thus, this paper proposes an on-line magnetization state estimation and closed-loop control using the magnetization manipulation signals. The magnetization state manipulation requires voltage injection to create the manipulation current. The current shows non-linear response at different magnetization state because the current changes the magnets state and the machine saturation level. The flux change rate, which is calculated by the injected voltage and the current response, is affected by the non-linearity and utilized in the proposed method for the magnetization state estimation. The proposed magnetization state estimation achieves self-sensing characteristic because the signals in the estimation already exist in the magnetization state manipulation. Based on the estimated and the target magnetization state, the closed-loop magnetization state control is achieved by the voltage injection regulation.</description><subject>Closed-loop magnetization state control</subject><subject>Couplings</subject><subject>Demagnetization</subject><subject>Electric potential</subject><subject>Estimation</subject><subject>Flux</subject><subject>Linearity</subject><subject>Magnetization</subject><subject>Magnetization state estimation</subject><subject>Magnets</subject><subject>Mathematical model</subject><subject>Motor control</subject><subject>Nonlinear response</subject><subject>Nonlinearity</subject><subject>Saturation magnetization</subject><subject>State estimation</subject><subject>Variable-flux memory machine</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQXURBqf4CLwHPqfud7LGEqpUWD1WvyyQ7qylptm5SUH-9qZHiXGZ4vPdmmEfINaNTxqi5nRXFfL2ecsrpVFAmTaZPyAVn2qRCCX36bz4nV123oUPlA6SyC_JYNKFDlzYh7JIVvLXY19_Q16FN1j30mBSh7WNoEh9iAskrxBrKBlPf7D-TFW5D_Bpk1Xvd4iU589B0ePXXJ-Tlbv5cPKTLp_tFMVumlaR5n_rcAxMm16i5Us6gZk44k-XO65xmVcmZKIENo_YIXPhclkI6QykHrTItJmQx-roAG7uL9Rbilw1Q218gxDcLsa-rBi1mmVdOQskFSO6rUqEyzhlX5caz4SMTcjN67WL42GPX203Yx3Y433KppJZCZHRgiZFVxdB1Ef1xK6P2kIEdM7CHDOxfBoPqelTViHhUGKY5Y0b8AFwqgXE</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Hu, Yusheng</creator><creator>Chen, Junhua</creator><creator>Qu, Ronghai</creator><creator>Chen, Bin</creator><creator>Xiao, Yong</creator><creator>Li, Xia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6375-0990</orcidid><orcidid>https://orcid.org/0000-0001-6401-3271</orcidid></search><sort><creationdate>20200101</creationdate><title>Closed-loop Magnetization State Control for a Variable-flux Memory Machine</title><author>Hu, Yusheng ; Chen, Junhua ; Qu, Ronghai ; Chen, Bin ; Xiao, Yong ; Li, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f8fa13986e6255d9e61d3d978df6807cb213ba18076fea23f84b34d9002a65763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Closed-loop magnetization state control</topic><topic>Couplings</topic><topic>Demagnetization</topic><topic>Electric potential</topic><topic>Estimation</topic><topic>Flux</topic><topic>Linearity</topic><topic>Magnetization</topic><topic>Magnetization state estimation</topic><topic>Magnets</topic><topic>Mathematical model</topic><topic>Motor control</topic><topic>Nonlinear response</topic><topic>Nonlinearity</topic><topic>Saturation magnetization</topic><topic>State estimation</topic><topic>Variable-flux memory machine</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yusheng</creatorcontrib><creatorcontrib>Chen, Junhua</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Xiao, Yong</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yusheng</au><au>Chen, Junhua</au><au>Qu, Ronghai</au><au>Chen, Bin</au><au>Xiao, Yong</au><au>Li, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-loop Magnetization State Control for a Variable-flux Memory Machine</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Variable flux memory machines (VFMM) use magnetization and demagnetization manipulations to adjust machine voltage, achieving wide-speed high-efficiency operation. The machine magnetization state manipulation is a critical concern in the VFMM control. Thus, this paper proposes an on-line magnetization state estimation and closed-loop control using the magnetization manipulation signals. The magnetization state manipulation requires voltage injection to create the manipulation current. The current shows non-linear response at different magnetization state because the current changes the magnets state and the machine saturation level. The flux change rate, which is calculated by the injected voltage and the current response, is affected by the non-linearity and utilized in the proposed method for the magnetization state estimation. The proposed magnetization state estimation achieves self-sensing characteristic because the signals in the estimation already exist in the magnetization state manipulation. Based on the estimated and the target magnetization state, the closed-loop magnetization state control is achieved by the voltage injection regulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3014976</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6375-0990</orcidid><orcidid>https://orcid.org/0000-0001-6401-3271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9162119 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Closed-loop magnetization state control Couplings Demagnetization Electric potential Estimation Flux Linearity Magnetization Magnetization state estimation Magnets Mathematical model Motor control Nonlinear response Nonlinearity Saturation magnetization State estimation Variable-flux memory machine Voltage Voltage control |
title | Closed-loop Magnetization State Control for a Variable-flux Memory Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-loop%20Magnetization%20State%20Control%20for%20a%20Variable-flux%20Memory%20Machine&rft.jtitle=IEEE%20access&rft.au=Hu,%20Yusheng&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3014976&rft_dat=%3Cproquest_ieee_%3E2454643370%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454643370&rft_id=info:pmid/&rft_ieee_id=9162119&rft_doaj_id=oai_doaj_org_article_e77f5d4ab23a42fcb5e59dd9dc89f135&rfr_iscdi=true |