Research on Optimization of Electric Vehicle Routing Problem with Time Window

As the urban population and scale gradually increase, the per capita income level of urban residents is also constantly increasing, more people have put forward higher requirements for material life. The degree of congestion of urban roads has a strong positive correlation with the development level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Li, Zhenping, Cao, Li, Li, Hao, Wang, Ruoda, Muren, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Li, Zhenping
Cao, Li
Li, Hao
Wang, Ruoda
Muren, M
description As the urban population and scale gradually increase, the per capita income level of urban residents is also constantly increasing, more people have put forward higher requirements for material life. The degree of congestion of urban roads has a strong positive correlation with the development level of the national economy. The crowded lanes directly affect the way people travel, especially in the field of logistics distribution. Electric vehicle distribution is one of the existing distribution methods that is less affected by traffic, but it is subject to mileage, cargo capacity and number of vehicles. In order to find an optimal urban distribution route that satisfies both the electric vehicle limitation and the customer time window limitation, a mixed planning model is established to conduct in-depth research on the routing problem. In the process of verifying the correctness of the model, a mixed algorithm with lower time complexity, which was calculated by the highest order in the model, is established, and two sets of instance data are used for calculation. The results show that the mixed algorithm not only has a faster calculation speed, but also can calculate the vehicle route in a large-scale situation.
doi_str_mv 10.1109/ACCESS.2020.3014638
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9160932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9160932</ieee_id><doaj_id>oai_doaj_org_article_14c6f30a09184766b856df3aa82b86be</doaj_id><sourcerecordid>2454644304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-a8cc9019a92ba56e42596aaad2a57fbde7e1bebcdb209ad892f669acfcc7d8db3</originalsourceid><addsrcrecordid>eNpNUdtKAzEQXURBqX6BLwGfW3PbbPJYSr2Aonh9DJNk1qa0Tc1uEf16t24pzsvMHOacOXCK4pzREWPUXI4nk-nz84hTTkeCMqmEPihOOFNmKEqhDv_Nx8VZ08xpV7qDyuqkuH_CBiH7GUkr8rBu4zL-QBu7JdVkukDf5ujJG86iXyB5Sps2rj7IY05ugUvyFdsZeYlLJO9xFdLXaXFUw6LBs10fFK9X05fJzfDu4fp2Mr4belnqdgjae0OZAcMdlAolL40CgMChrGoXsELm0PngODUQtOG1UgZ87X0VdHBiUNz2uiHB3K5zXEL-tgmi_QNS_rCQ261ly6RXtaBADdOyUsrpUoVaAGjutHLYaV30WuucPjfYtHaeNnnV2bdcllJJKajsrkR_5XNqmoz1_iujdhuD7WOw2xjsLoaOdd6zIiLuGYYpagQXv8UZhCo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454644304</pqid></control><display><type>article</type><title>Research on Optimization of Electric Vehicle Routing Problem with Time Window</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Zhenping ; Cao, Li ; Li, Hao ; Wang, Ruoda ; Muren, M</creator><creatorcontrib>Li, Zhenping ; Cao, Li ; Li, Hao ; Wang, Ruoda ; Muren, M</creatorcontrib><description>As the urban population and scale gradually increase, the per capita income level of urban residents is also constantly increasing, more people have put forward higher requirements for material life. The degree of congestion of urban roads has a strong positive correlation with the development level of the national economy. The crowded lanes directly affect the way people travel, especially in the field of logistics distribution. Electric vehicle distribution is one of the existing distribution methods that is less affected by traffic, but it is subject to mileage, cargo capacity and number of vehicles. In order to find an optimal urban distribution route that satisfies both the electric vehicle limitation and the customer time window limitation, a mixed planning model is established to conduct in-depth research on the routing problem. In the process of verifying the correctness of the model, a mixed algorithm with lower time complexity, which was calculated by the highest order in the model, is established, and two sets of instance data are used for calculation. The results show that the mixed algorithm not only has a faster calculation speed, but also can calculate the vehicle route in a large-scale situation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3014638</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cargo capacity ; Customer satisfaction ; Electric vehicle ; Electric vehicles ; Exchange method ; Heuristic ; Heuristic algorithms ; Insertion method ; Logistics ; Microsoft Windows ; Optimization ; Route planning ; Routing ; Traffic capacity ; Vehicle dynamics ; Vehicle route ; Vehicle routing ; Windows ; Windows (intervals)</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-a8cc9019a92ba56e42596aaad2a57fbde7e1bebcdb209ad892f669acfcc7d8db3</citedby><cites>FETCH-LOGICAL-c458t-a8cc9019a92ba56e42596aaad2a57fbde7e1bebcdb209ad892f669acfcc7d8db3</cites><orcidid>0000-0002-3324-5405 ; 0000-0002-0580-3799 ; 0000-0002-9502-2784 ; 0000-0002-6023-4998 ; 0000-0002-8714-0940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9160932$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Zhenping</creatorcontrib><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wang, Ruoda</creatorcontrib><creatorcontrib>Muren, M</creatorcontrib><title>Research on Optimization of Electric Vehicle Routing Problem with Time Window</title><title>IEEE access</title><addtitle>Access</addtitle><description>As the urban population and scale gradually increase, the per capita income level of urban residents is also constantly increasing, more people have put forward higher requirements for material life. The degree of congestion of urban roads has a strong positive correlation with the development level of the national economy. The crowded lanes directly affect the way people travel, especially in the field of logistics distribution. Electric vehicle distribution is one of the existing distribution methods that is less affected by traffic, but it is subject to mileage, cargo capacity and number of vehicles. In order to find an optimal urban distribution route that satisfies both the electric vehicle limitation and the customer time window limitation, a mixed planning model is established to conduct in-depth research on the routing problem. In the process of verifying the correctness of the model, a mixed algorithm with lower time complexity, which was calculated by the highest order in the model, is established, and two sets of instance data are used for calculation. The results show that the mixed algorithm not only has a faster calculation speed, but also can calculate the vehicle route in a large-scale situation.</description><subject>Algorithms</subject><subject>Cargo capacity</subject><subject>Customer satisfaction</subject><subject>Electric vehicle</subject><subject>Electric vehicles</subject><subject>Exchange method</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Insertion method</subject><subject>Logistics</subject><subject>Microsoft Windows</subject><subject>Optimization</subject><subject>Route planning</subject><subject>Routing</subject><subject>Traffic capacity</subject><subject>Vehicle dynamics</subject><subject>Vehicle route</subject><subject>Vehicle routing</subject><subject>Windows</subject><subject>Windows (intervals)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQXURBqX6BLwGfW3PbbPJYSr2Aonh9DJNk1qa0Tc1uEf16t24pzsvMHOacOXCK4pzREWPUXI4nk-nz84hTTkeCMqmEPihOOFNmKEqhDv_Nx8VZ08xpV7qDyuqkuH_CBiH7GUkr8rBu4zL-QBu7JdVkukDf5ujJG86iXyB5Sps2rj7IY05ugUvyFdsZeYlLJO9xFdLXaXFUw6LBs10fFK9X05fJzfDu4fp2Mr4belnqdgjae0OZAcMdlAolL40CgMChrGoXsELm0PngODUQtOG1UgZ87X0VdHBiUNz2uiHB3K5zXEL-tgmi_QNS_rCQ261ly6RXtaBADdOyUsrpUoVaAGjutHLYaV30WuucPjfYtHaeNnnV2bdcllJJKajsrkR_5XNqmoz1_iujdhuD7WOw2xjsLoaOdd6zIiLuGYYpagQXv8UZhCo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Zhenping</creator><creator>Cao, Li</creator><creator>Li, Hao</creator><creator>Wang, Ruoda</creator><creator>Muren, M</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3324-5405</orcidid><orcidid>https://orcid.org/0000-0002-0580-3799</orcidid><orcidid>https://orcid.org/0000-0002-9502-2784</orcidid><orcidid>https://orcid.org/0000-0002-6023-4998</orcidid><orcidid>https://orcid.org/0000-0002-8714-0940</orcidid></search><sort><creationdate>20200101</creationdate><title>Research on Optimization of Electric Vehicle Routing Problem with Time Window</title><author>Li, Zhenping ; Cao, Li ; Li, Hao ; Wang, Ruoda ; Muren, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-a8cc9019a92ba56e42596aaad2a57fbde7e1bebcdb209ad892f669acfcc7d8db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cargo capacity</topic><topic>Customer satisfaction</topic><topic>Electric vehicle</topic><topic>Electric vehicles</topic><topic>Exchange method</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Insertion method</topic><topic>Logistics</topic><topic>Microsoft Windows</topic><topic>Optimization</topic><topic>Route planning</topic><topic>Routing</topic><topic>Traffic capacity</topic><topic>Vehicle dynamics</topic><topic>Vehicle route</topic><topic>Vehicle routing</topic><topic>Windows</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenping</creatorcontrib><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Wang, Ruoda</creatorcontrib><creatorcontrib>Muren, M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhenping</au><au>Cao, Li</au><au>Li, Hao</au><au>Wang, Ruoda</au><au>Muren, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Optimization of Electric Vehicle Routing Problem with Time Window</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As the urban population and scale gradually increase, the per capita income level of urban residents is also constantly increasing, more people have put forward higher requirements for material life. The degree of congestion of urban roads has a strong positive correlation with the development level of the national economy. The crowded lanes directly affect the way people travel, especially in the field of logistics distribution. Electric vehicle distribution is one of the existing distribution methods that is less affected by traffic, but it is subject to mileage, cargo capacity and number of vehicles. In order to find an optimal urban distribution route that satisfies both the electric vehicle limitation and the customer time window limitation, a mixed planning model is established to conduct in-depth research on the routing problem. In the process of verifying the correctness of the model, a mixed algorithm with lower time complexity, which was calculated by the highest order in the model, is established, and two sets of instance data are used for calculation. The results show that the mixed algorithm not only has a faster calculation speed, but also can calculate the vehicle route in a large-scale situation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3014638</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3324-5405</orcidid><orcidid>https://orcid.org/0000-0002-0580-3799</orcidid><orcidid>https://orcid.org/0000-0002-9502-2784</orcidid><orcidid>https://orcid.org/0000-0002-6023-4998</orcidid><orcidid>https://orcid.org/0000-0002-8714-0940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9160932
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Cargo capacity
Customer satisfaction
Electric vehicle
Electric vehicles
Exchange method
Heuristic
Heuristic algorithms
Insertion method
Logistics
Microsoft Windows
Optimization
Route planning
Routing
Traffic capacity
Vehicle dynamics
Vehicle route
Vehicle routing
Windows
Windows (intervals)
title Research on Optimization of Electric Vehicle Routing Problem with Time Window
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Optimization%20of%20Electric%20Vehicle%20Routing%20Problem%20with%20Time%20Window&rft.jtitle=IEEE%20access&rft.au=Li,%20Zhenping&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3014638&rft_dat=%3Cproquest_ieee_%3E2454644304%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454644304&rft_id=info:pmid/&rft_ieee_id=9160932&rft_doaj_id=oai_doaj_org_article_14c6f30a09184766b856df3aa82b86be&rfr_iscdi=true