Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell

Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tarasov, I., Ostapenko, S., Kalejs, J.P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue
container_start_page 112
container_title
container_volume
creator Tarasov, I.
Ostapenko, S.
Kalejs, J.P.
description Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In these areas we consistently observe an additional "defect" PL band with the maximum at about 0.8 eV attributed to dislocation networks. A simple approach of selectively monitoring the concentration of the defect centers is introduced. Consecutive solar cell processing steps gradually increase band-to-band and defect PL intensities due to lifetime upgrading. Concurrently, the rate of reduction of the defect concentration is much lower. We demonstrate here that PL approach offers a monitoring method for dislocations to characterize as-grown and processed multicrystalline Si.
doi_str_mv 10.1109/PVSC.2000.915767
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_915767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>915767</ieee_id><sourcerecordid>915767</sourcerecordid><originalsourceid>FETCH-ieee_primary_9157673</originalsourceid><addsrcrecordid>eNp9TsFqwzAUM3SFdmvvZSf_QLPnmMbNudvYcdCxazHmZXvlxQ5-ziF_v5TtPBCSQBJIqZ2Byhhon94_z6eqBoCqNQfXuIXatu4IM-zBudreqTWYBvZH68xK3YtcAWqwjVmr7hk7DEX3KVJJmeKXHuXGEnyMNzN8p5J47CmiBIwBtQzzIicJaZg0Rd2PXCjkSYpnnmtaiCmkqCWxzzog80YtO8-C2z99UI-vLx-ntz0h4mXI1Ps8XX7f23_DH1VCSkw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tarasov, I. ; Ostapenko, S. ; Kalejs, J.P.</creator><creatorcontrib>Tarasov, I. ; Ostapenko, S. ; Kalejs, J.P.</creatorcontrib><description>Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In these areas we consistently observe an additional "defect" PL band with the maximum at about 0.8 eV attributed to dislocation networks. A simple approach of selectively monitoring the concentration of the defect centers is introduced. Consecutive solar cell processing steps gradually increase band-to-band and defect PL intensities due to lifetime upgrading. Concurrently, the rate of reduction of the defect concentration is much lower. We demonstrate here that PL approach offers a monitoring method for dislocations to characterize as-grown and processed multicrystalline Si.</description><identifier>ISSN: 0160-8371</identifier><identifier>ISBN: 9780780357723</identifier><identifier>ISBN: 0780357728</identifier><identifier>DOI: 10.1109/PVSC.2000.915767</identifier><language>eng</language><publisher>IEEE</publisher><subject>Luminescence ; Microelectronics ; Monitoring ; Optical sensors ; Photoluminescence ; Photovoltaic cells ; Production ; Silicon ; Spatial resolution ; Spectroscopy</subject><ispartof>Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036), 2000, p.112-115</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/915767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/915767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tarasov, I.</creatorcontrib><creatorcontrib>Ostapenko, S.</creatorcontrib><creatorcontrib>Kalejs, J.P.</creatorcontrib><title>Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell</title><title>Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)</title><addtitle>PVSC</addtitle><description>Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In these areas we consistently observe an additional "defect" PL band with the maximum at about 0.8 eV attributed to dislocation networks. A simple approach of selectively monitoring the concentration of the defect centers is introduced. Consecutive solar cell processing steps gradually increase band-to-band and defect PL intensities due to lifetime upgrading. Concurrently, the rate of reduction of the defect concentration is much lower. We demonstrate here that PL approach offers a monitoring method for dislocations to characterize as-grown and processed multicrystalline Si.</description><subject>Luminescence</subject><subject>Microelectronics</subject><subject>Monitoring</subject><subject>Optical sensors</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Production</subject><subject>Silicon</subject><subject>Spatial resolution</subject><subject>Spectroscopy</subject><issn>0160-8371</issn><isbn>9780780357723</isbn><isbn>0780357728</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9TsFqwzAUM3SFdmvvZSf_QLPnmMbNudvYcdCxazHmZXvlxQ5-ziF_v5TtPBCSQBJIqZ2Byhhon94_z6eqBoCqNQfXuIXatu4IM-zBudreqTWYBvZH68xK3YtcAWqwjVmr7hk7DEX3KVJJmeKXHuXGEnyMNzN8p5J47CmiBIwBtQzzIicJaZg0Rd2PXCjkSYpnnmtaiCmkqCWxzzog80YtO8-C2z99UI-vLx-ntz0h4mXI1Ps8XX7f23_DH1VCSkw</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Tarasov, I.</creator><creator>Ostapenko, S.</creator><creator>Kalejs, J.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell</title><author>Tarasov, I. ; Ostapenko, S. ; Kalejs, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9157673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Luminescence</topic><topic>Microelectronics</topic><topic>Monitoring</topic><topic>Optical sensors</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Production</topic><topic>Silicon</topic><topic>Spatial resolution</topic><topic>Spectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarasov, I.</creatorcontrib><creatorcontrib>Ostapenko, S.</creatorcontrib><creatorcontrib>Kalejs, J.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tarasov, I.</au><au>Ostapenko, S.</au><au>Kalejs, J.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell</atitle><btitle>Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)</btitle><stitle>PVSC</stitle><date>2000</date><risdate>2000</risdate><spage>112</spage><epage>115</epage><pages>112-115</pages><issn>0160-8371</issn><isbn>9780780357723</isbn><isbn>0780357728</isbn><abstract>Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In these areas we consistently observe an additional "defect" PL band with the maximum at about 0.8 eV attributed to dislocation networks. A simple approach of selectively monitoring the concentration of the defect centers is introduced. Consecutive solar cell processing steps gradually increase band-to-band and defect PL intensities due to lifetime upgrading. Concurrently, the rate of reduction of the defect concentration is much lower. We demonstrate here that PL approach offers a monitoring method for dislocations to characterize as-grown and processed multicrystalline Si.</abstract><pub>IEEE</pub><doi>10.1109/PVSC.2000.915767</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0160-8371
ispartof Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036), 2000, p.112-115
issn 0160-8371
language eng
recordid cdi_ieee_primary_915767
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Luminescence
Microelectronics
Monitoring
Optical sensors
Photoluminescence
Photovoltaic cells
Production
Silicon
Spatial resolution
Spectroscopy
title Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Defect%20monitoring%20using%20scanning%20photoluminescence%20spectroscopy%20in%20multicrystalline%20silicon%20solar%20cell&rft.btitle=Conference%20Record%20of%20the%20Twenty-Eighth%20IEEE%20Photovoltaic%20Specialists%20Conference%20-%202000%20(Cat.%20No.00CH37036)&rft.au=Tarasov,%20I.&rft.date=2000&rft.spage=112&rft.epage=115&rft.pages=112-115&rft.issn=0160-8371&rft.isbn=9780780357723&rft.isbn_list=0780357728&rft_id=info:doi/10.1109/PVSC.2000.915767&rft_dat=%3Cieee_6IE%3E915767%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=915767&rfr_iscdi=true