Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell
Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | |
container_start_page | 112 |
container_title | |
container_volume | |
creator | Tarasov, I. Ostapenko, S. Kalejs, J.P. |
description | Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In these areas we consistently observe an additional "defect" PL band with the maximum at about 0.8 eV attributed to dislocation networks. A simple approach of selectively monitoring the concentration of the defect centers is introduced. Consecutive solar cell processing steps gradually increase band-to-band and defect PL intensities due to lifetime upgrading. Concurrently, the rate of reduction of the defect concentration is much lower. We demonstrate here that PL approach offers a monitoring method for dislocations to characterize as-grown and processed multicrystalline Si. |
doi_str_mv | 10.1109/PVSC.2000.915767 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_915767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>915767</ieee_id><sourcerecordid>915767</sourcerecordid><originalsourceid>FETCH-ieee_primary_9157673</originalsourceid><addsrcrecordid>eNp9TsFqwzAUM3SFdmvvZSf_QLPnmMbNudvYcdCxazHmZXvlxQ5-ziF_v5TtPBCSQBJIqZ2Byhhon94_z6eqBoCqNQfXuIXatu4IM-zBudreqTWYBvZH68xK3YtcAWqwjVmr7hk7DEX3KVJJmeKXHuXGEnyMNzN8p5J47CmiBIwBtQzzIicJaZg0Rd2PXCjkSYpnnmtaiCmkqCWxzzog80YtO8-C2z99UI-vLx-ntz0h4mXI1Ps8XX7f23_DH1VCSkw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tarasov, I. ; Ostapenko, S. ; Kalejs, J.P.</creator><creatorcontrib>Tarasov, I. ; Ostapenko, S. ; Kalejs, J.P.</creatorcontrib><description>Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In these areas we consistently observe an additional "defect" PL band with the maximum at about 0.8 eV attributed to dislocation networks. A simple approach of selectively monitoring the concentration of the defect centers is introduced. Consecutive solar cell processing steps gradually increase band-to-band and defect PL intensities due to lifetime upgrading. Concurrently, the rate of reduction of the defect concentration is much lower. We demonstrate here that PL approach offers a monitoring method for dislocations to characterize as-grown and processed multicrystalline Si.</description><identifier>ISSN: 0160-8371</identifier><identifier>ISBN: 9780780357723</identifier><identifier>ISBN: 0780357728</identifier><identifier>DOI: 10.1109/PVSC.2000.915767</identifier><language>eng</language><publisher>IEEE</publisher><subject>Luminescence ; Microelectronics ; Monitoring ; Optical sensors ; Photoluminescence ; Photovoltaic cells ; Production ; Silicon ; Spatial resolution ; Spectroscopy</subject><ispartof>Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036), 2000, p.112-115</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/915767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/915767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tarasov, I.</creatorcontrib><creatorcontrib>Ostapenko, S.</creatorcontrib><creatorcontrib>Kalejs, J.P.</creatorcontrib><title>Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell</title><title>Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)</title><addtitle>PVSC</addtitle><description>Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In these areas we consistently observe an additional "defect" PL band with the maximum at about 0.8 eV attributed to dislocation networks. A simple approach of selectively monitoring the concentration of the defect centers is introduced. Consecutive solar cell processing steps gradually increase band-to-band and defect PL intensities due to lifetime upgrading. Concurrently, the rate of reduction of the defect concentration is much lower. We demonstrate here that PL approach offers a monitoring method for dislocations to characterize as-grown and processed multicrystalline Si.</description><subject>Luminescence</subject><subject>Microelectronics</subject><subject>Monitoring</subject><subject>Optical sensors</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Production</subject><subject>Silicon</subject><subject>Spatial resolution</subject><subject>Spectroscopy</subject><issn>0160-8371</issn><isbn>9780780357723</isbn><isbn>0780357728</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9TsFqwzAUM3SFdmvvZSf_QLPnmMbNudvYcdCxazHmZXvlxQ5-ziF_v5TtPBCSQBJIqZ2Byhhon94_z6eqBoCqNQfXuIXatu4IM-zBudreqTWYBvZH68xK3YtcAWqwjVmr7hk7DEX3KVJJmeKXHuXGEnyMNzN8p5J47CmiBIwBtQzzIicJaZg0Rd2PXCjkSYpnnmtaiCmkqCWxzzog80YtO8-C2z99UI-vLx-ntz0h4mXI1Ps8XX7f23_DH1VCSkw</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Tarasov, I.</creator><creator>Ostapenko, S.</creator><creator>Kalejs, J.P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell</title><author>Tarasov, I. ; Ostapenko, S. ; Kalejs, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_9157673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Luminescence</topic><topic>Microelectronics</topic><topic>Monitoring</topic><topic>Optical sensors</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Production</topic><topic>Silicon</topic><topic>Spatial resolution</topic><topic>Spectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Tarasov, I.</creatorcontrib><creatorcontrib>Ostapenko, S.</creatorcontrib><creatorcontrib>Kalejs, J.P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tarasov, I.</au><au>Ostapenko, S.</au><au>Kalejs, J.P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell</atitle><btitle>Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)</btitle><stitle>PVSC</stitle><date>2000</date><risdate>2000</risdate><spage>112</spage><epage>115</epage><pages>112-115</pages><issn>0160-8371</issn><isbn>9780780357723</isbn><isbn>0780357728</isbn><abstract>Room-temperature scanning photoluminescence (PL) was applied to full-size as-grown and processed EFG wafers to investigate the evolution of low lifetime areas after different solar cell processing steps. PL mapping of the band-to-band PL intensity provides a means to identify low lifetime areas. In these areas we consistently observe an additional "defect" PL band with the maximum at about 0.8 eV attributed to dislocation networks. A simple approach of selectively monitoring the concentration of the defect centers is introduced. Consecutive solar cell processing steps gradually increase band-to-band and defect PL intensities due to lifetime upgrading. Concurrently, the rate of reduction of the defect concentration is much lower. We demonstrate here that PL approach offers a monitoring method for dislocations to characterize as-grown and processed multicrystalline Si.</abstract><pub>IEEE</pub><doi>10.1109/PVSC.2000.915767</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0160-8371 |
ispartof | Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036), 2000, p.112-115 |
issn | 0160-8371 |
language | eng |
recordid | cdi_ieee_primary_915767 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Luminescence Microelectronics Monitoring Optical sensors Photoluminescence Photovoltaic cells Production Silicon Spatial resolution Spectroscopy |
title | Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon solar cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Defect%20monitoring%20using%20scanning%20photoluminescence%20spectroscopy%20in%20multicrystalline%20silicon%20solar%20cell&rft.btitle=Conference%20Record%20of%20the%20Twenty-Eighth%20IEEE%20Photovoltaic%20Specialists%20Conference%20-%202000%20(Cat.%20No.00CH37036)&rft.au=Tarasov,%20I.&rft.date=2000&rft.spage=112&rft.epage=115&rft.pages=112-115&rft.issn=0160-8371&rft.isbn=9780780357723&rft.isbn_list=0780357728&rft_id=info:doi/10.1109/PVSC.2000.915767&rft_dat=%3Cieee_6IE%3E915767%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=915767&rfr_iscdi=true |