Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data

Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-01, Vol.21 (1), p.520-528
Hauptverfasser: Tobon V., Diana P., Garudadri, Harinath, Godino, Job G., Godbole, Suneeta, Patrick, Kevin, Falk, Tiago H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 1
container_start_page 520
container_title IEEE sensors journal
container_volume 21
creator Tobon V., Diana P.
Garudadri, Harinath
Godino, Job G.
Godbole, Suneeta
Patrick, Kevin
Falk, Tiago H.
description Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectro-temporal signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation ( \rho =0.98 ) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices.
doi_str_mv 10.1109/JSEN.2020.3013996
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9154733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9154733</ieee_id><sourcerecordid>2468752454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-294b54947e041c7fbe775d8e0924a96c92550a211ee2c1e3abeff57ccad07d493</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NZ7M5lqq1UuuhCh6EkGZnIWXb1CQt9N-7S6uneQeeGWYehG4pGVBK9MPr4mk-YISRASeUaz08Qz0qZVlQJcrzLnNSCK6-LtFVSitCqFZS9dD3dL2NYQ8Vnlif8WILbRzbxu0am33Y4L23-C1Uf20LuBxtg0cb2xySTzjUeB58OuCRc9BADGvIEPGjzfYaXdS2SXBzqn30-fz0MX4pZu-T6Xg0KxzTPBdMi6UUWigggjpVL0EpWZVANBNWD51mUhLLKAVgjgK3S6hrqZyzFVGV0LyP7o9721d-dpCyWYVdbA9MholhqSQTUrQUPVIuhpQi1GYb_drGg6HEdBJNJ9F0Es1JYjtzd5zxAPDPayqF4pz_Ahu9bgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468752454</pqid></control><display><type>article</type><title>Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data</title><source>IEEE Xplore</source><creator>Tobon V., Diana P. ; Garudadri, Harinath ; Godino, Job G. ; Godbole, Suneeta ; Patrick, Kevin ; Falk, Tiago H.</creator><creatorcontrib>Tobon V., Diana P. ; Garudadri, Harinath ; Godino, Job G. ; Godbole, Suneeta ; Patrick, Kevin ; Falk, Tiago H.</creatorcontrib><description>Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectro-temporal signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\rho =0.98 &lt;/tex-math&gt;&lt;/inline-formula&gt;) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3013996</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometer ; Accelerometers ; Adults ; Frequency modulation ; Gait ; gait speed ; Ground truth ; Low cost ; Measurement methods ; Modulation ; modulation spectrum ; Noise measurement ; Older people ; Signal processing ; Spectrogram ; Spectrum analysis ; telehealth ; Telemedicine ; Time-frequency analysis ; Transforms ; Wearable computers ; Wearable technology ; wearables</subject><ispartof>IEEE sensors journal, 2021-01, Vol.21 (1), p.520-528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-294b54947e041c7fbe775d8e0924a96c92550a211ee2c1e3abeff57ccad07d493</citedby><cites>FETCH-LOGICAL-c293t-294b54947e041c7fbe775d8e0924a96c92550a211ee2c1e3abeff57ccad07d493</cites><orcidid>0000-0003-4659-7693 ; 0000-0002-4852-6277 ; 0000-0002-5739-2514 ; 0000-0002-7334-3042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9154733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9154733$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tobon V., Diana P.</creatorcontrib><creatorcontrib>Garudadri, Harinath</creatorcontrib><creatorcontrib>Godino, Job G.</creatorcontrib><creatorcontrib>Godbole, Suneeta</creatorcontrib><creatorcontrib>Patrick, Kevin</creatorcontrib><creatorcontrib>Falk, Tiago H.</creatorcontrib><title>Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectro-temporal signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\rho =0.98 &lt;/tex-math&gt;&lt;/inline-formula&gt;) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices.</description><subject>Accelerometer</subject><subject>Accelerometers</subject><subject>Adults</subject><subject>Frequency modulation</subject><subject>Gait</subject><subject>gait speed</subject><subject>Ground truth</subject><subject>Low cost</subject><subject>Measurement methods</subject><subject>Modulation</subject><subject>modulation spectrum</subject><subject>Noise measurement</subject><subject>Older people</subject><subject>Signal processing</subject><subject>Spectrogram</subject><subject>Spectrum analysis</subject><subject>telehealth</subject><subject>Telemedicine</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><subject>wearables</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NZ7M5lqq1UuuhCh6EkGZnIWXb1CQt9N-7S6uneQeeGWYehG4pGVBK9MPr4mk-YISRASeUaz08Qz0qZVlQJcrzLnNSCK6-LtFVSitCqFZS9dD3dL2NYQ8Vnlif8WILbRzbxu0am33Y4L23-C1Uf20LuBxtg0cb2xySTzjUeB58OuCRc9BADGvIEPGjzfYaXdS2SXBzqn30-fz0MX4pZu-T6Xg0KxzTPBdMi6UUWigggjpVL0EpWZVANBNWD51mUhLLKAVgjgK3S6hrqZyzFVGV0LyP7o9721d-dpCyWYVdbA9MholhqSQTUrQUPVIuhpQi1GYb_drGg6HEdBJNJ9F0Es1JYjtzd5zxAPDPayqF4pz_Ahu9bgQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Tobon V., Diana P.</creator><creator>Garudadri, Harinath</creator><creator>Godino, Job G.</creator><creator>Godbole, Suneeta</creator><creator>Patrick, Kevin</creator><creator>Falk, Tiago H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4659-7693</orcidid><orcidid>https://orcid.org/0000-0002-4852-6277</orcidid><orcidid>https://orcid.org/0000-0002-5739-2514</orcidid><orcidid>https://orcid.org/0000-0002-7334-3042</orcidid></search><sort><creationdate>20210101</creationdate><title>Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data</title><author>Tobon V., Diana P. ; Garudadri, Harinath ; Godino, Job G. ; Godbole, Suneeta ; Patrick, Kevin ; Falk, Tiago H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-294b54947e041c7fbe775d8e0924a96c92550a211ee2c1e3abeff57ccad07d493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerometer</topic><topic>Accelerometers</topic><topic>Adults</topic><topic>Frequency modulation</topic><topic>Gait</topic><topic>gait speed</topic><topic>Ground truth</topic><topic>Low cost</topic><topic>Measurement methods</topic><topic>Modulation</topic><topic>modulation spectrum</topic><topic>Noise measurement</topic><topic>Older people</topic><topic>Signal processing</topic><topic>Spectrogram</topic><topic>Spectrum analysis</topic><topic>telehealth</topic><topic>Telemedicine</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tobon V., Diana P.</creatorcontrib><creatorcontrib>Garudadri, Harinath</creatorcontrib><creatorcontrib>Godino, Job G.</creatorcontrib><creatorcontrib>Godbole, Suneeta</creatorcontrib><creatorcontrib>Patrick, Kevin</creatorcontrib><creatorcontrib>Falk, Tiago H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tobon V., Diana P.</au><au>Garudadri, Harinath</au><au>Godino, Job G.</au><au>Godbole, Suneeta</au><au>Patrick, Kevin</au><au>Falk, Tiago H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>520</spage><epage>528</epage><pages>520-528</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectro-temporal signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation (&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\rho =0.98 &lt;/tex-math&gt;&lt;/inline-formula&gt;) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3013996</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4659-7693</orcidid><orcidid>https://orcid.org/0000-0002-4852-6277</orcidid><orcidid>https://orcid.org/0000-0002-5739-2514</orcidid><orcidid>https://orcid.org/0000-0002-7334-3042</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-01, Vol.21 (1), p.520-528
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9154733
source IEEE Xplore
subjects Accelerometer
Accelerometers
Adults
Frequency modulation
Gait
gait speed
Ground truth
Low cost
Measurement methods
Modulation
modulation spectrum
Noise measurement
Older people
Signal processing
Spectrogram
Spectrum analysis
telehealth
Telemedicine
Time-frequency analysis
Transforms
Wearable computers
Wearable technology
wearables
title Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Gait%20Speed%20Calculation%20via%20Modulation%20Spectral%20Analysis%20of%20Noisy%20Accelerometer%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Tobon%20V.,%20Diana%20P.&rft.date=2021-01-01&rft.volume=21&rft.issue=1&rft.spage=520&rft.epage=528&rft.pages=520-528&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3013996&rft_dat=%3Cproquest_RIE%3E2468752454%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468752454&rft_id=info:pmid/&rft_ieee_id=9154733&rfr_iscdi=true