Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data
Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important p...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-01, Vol.21 (1), p.520-528 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | 1 |
container_start_page | 520 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Tobon V., Diana P. Garudadri, Harinath Godino, Job G. Godbole, Suneeta Patrick, Kevin Falk, Tiago H. |
description | Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectro-temporal signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation ( \rho =0.98 ) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices. |
doi_str_mv | 10.1109/JSEN.2020.3013996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9154733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9154733</ieee_id><sourcerecordid>2468752454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-294b54947e041c7fbe775d8e0924a96c92550a211ee2c1e3abeff57ccad07d493</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NZ7M5lqq1UuuhCh6EkGZnIWXb1CQt9N-7S6uneQeeGWYehG4pGVBK9MPr4mk-YISRASeUaz08Qz0qZVlQJcrzLnNSCK6-LtFVSitCqFZS9dD3dL2NYQ8Vnlif8WILbRzbxu0am33Y4L23-C1Uf20LuBxtg0cb2xySTzjUeB58OuCRc9BADGvIEPGjzfYaXdS2SXBzqn30-fz0MX4pZu-T6Xg0KxzTPBdMi6UUWigggjpVL0EpWZVANBNWD51mUhLLKAVgjgK3S6hrqZyzFVGV0LyP7o9721d-dpCyWYVdbA9MholhqSQTUrQUPVIuhpQi1GYb_drGg6HEdBJNJ9F0Es1JYjtzd5zxAPDPayqF4pz_Ahu9bgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468752454</pqid></control><display><type>article</type><title>Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data</title><source>IEEE Xplore</source><creator>Tobon V., Diana P. ; Garudadri, Harinath ; Godino, Job G. ; Godbole, Suneeta ; Patrick, Kevin ; Falk, Tiago H.</creator><creatorcontrib>Tobon V., Diana P. ; Garudadri, Harinath ; Godino, Job G. ; Godbole, Suneeta ; Patrick, Kevin ; Falk, Tiago H.</creatorcontrib><description>Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectro-temporal signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation (<inline-formula> <tex-math notation="LaTeX">\rho =0.98 </tex-math></inline-formula>) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3013996</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometer ; Accelerometers ; Adults ; Frequency modulation ; Gait ; gait speed ; Ground truth ; Low cost ; Measurement methods ; Modulation ; modulation spectrum ; Noise measurement ; Older people ; Signal processing ; Spectrogram ; Spectrum analysis ; telehealth ; Telemedicine ; Time-frequency analysis ; Transforms ; Wearable computers ; Wearable technology ; wearables</subject><ispartof>IEEE sensors journal, 2021-01, Vol.21 (1), p.520-528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-294b54947e041c7fbe775d8e0924a96c92550a211ee2c1e3abeff57ccad07d493</citedby><cites>FETCH-LOGICAL-c293t-294b54947e041c7fbe775d8e0924a96c92550a211ee2c1e3abeff57ccad07d493</cites><orcidid>0000-0003-4659-7693 ; 0000-0002-4852-6277 ; 0000-0002-5739-2514 ; 0000-0002-7334-3042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9154733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9154733$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tobon V., Diana P.</creatorcontrib><creatorcontrib>Garudadri, Harinath</creatorcontrib><creatorcontrib>Godino, Job G.</creatorcontrib><creatorcontrib>Godbole, Suneeta</creatorcontrib><creatorcontrib>Patrick, Kevin</creatorcontrib><creatorcontrib>Falk, Tiago H.</creatorcontrib><title>Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectro-temporal signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation (<inline-formula> <tex-math notation="LaTeX">\rho =0.98 </tex-math></inline-formula>) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices.</description><subject>Accelerometer</subject><subject>Accelerometers</subject><subject>Adults</subject><subject>Frequency modulation</subject><subject>Gait</subject><subject>gait speed</subject><subject>Ground truth</subject><subject>Low cost</subject><subject>Measurement methods</subject><subject>Modulation</subject><subject>modulation spectrum</subject><subject>Noise measurement</subject><subject>Older people</subject><subject>Signal processing</subject><subject>Spectrogram</subject><subject>Spectrum analysis</subject><subject>telehealth</subject><subject>Telemedicine</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><subject>wearables</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NZ7M5lqq1UuuhCh6EkGZnIWXb1CQt9N-7S6uneQeeGWYehG4pGVBK9MPr4mk-YISRASeUaz08Qz0qZVlQJcrzLnNSCK6-LtFVSitCqFZS9dD3dL2NYQ8Vnlif8WILbRzbxu0am33Y4L23-C1Uf20LuBxtg0cb2xySTzjUeB58OuCRc9BADGvIEPGjzfYaXdS2SXBzqn30-fz0MX4pZu-T6Xg0KxzTPBdMi6UUWigggjpVL0EpWZVANBNWD51mUhLLKAVgjgK3S6hrqZyzFVGV0LyP7o9721d-dpCyWYVdbA9MholhqSQTUrQUPVIuhpQi1GYb_drGg6HEdBJNJ9F0Es1JYjtzd5zxAPDPayqF4pz_Ahu9bgQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Tobon V., Diana P.</creator><creator>Garudadri, Harinath</creator><creator>Godino, Job G.</creator><creator>Godbole, Suneeta</creator><creator>Patrick, Kevin</creator><creator>Falk, Tiago H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4659-7693</orcidid><orcidid>https://orcid.org/0000-0002-4852-6277</orcidid><orcidid>https://orcid.org/0000-0002-5739-2514</orcidid><orcidid>https://orcid.org/0000-0002-7334-3042</orcidid></search><sort><creationdate>20210101</creationdate><title>Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data</title><author>Tobon V., Diana P. ; Garudadri, Harinath ; Godino, Job G. ; Godbole, Suneeta ; Patrick, Kevin ; Falk, Tiago H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-294b54947e041c7fbe775d8e0924a96c92550a211ee2c1e3abeff57ccad07d493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerometer</topic><topic>Accelerometers</topic><topic>Adults</topic><topic>Frequency modulation</topic><topic>Gait</topic><topic>gait speed</topic><topic>Ground truth</topic><topic>Low cost</topic><topic>Measurement methods</topic><topic>Modulation</topic><topic>modulation spectrum</topic><topic>Noise measurement</topic><topic>Older people</topic><topic>Signal processing</topic><topic>Spectrogram</topic><topic>Spectrum analysis</topic><topic>telehealth</topic><topic>Telemedicine</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tobon V., Diana P.</creatorcontrib><creatorcontrib>Garudadri, Harinath</creatorcontrib><creatorcontrib>Godino, Job G.</creatorcontrib><creatorcontrib>Godbole, Suneeta</creatorcontrib><creatorcontrib>Patrick, Kevin</creatorcontrib><creatorcontrib>Falk, Tiago H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tobon V., Diana P.</au><au>Garudadri, Harinath</au><au>Godino, Job G.</au><au>Godbole, Suneeta</au><au>Patrick, Kevin</au><au>Falk, Tiago H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>520</spage><epage>528</epage><pages>520-528</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Chronic diseases among older adults carry a heavy burden on a country's healthcare system and economy. As such, there is a critical need for the development of cost-effective, technology-based tools that can be scaled to meet the needs of older adults. Gait speed, for example, is an important predictor of change in functional status and health outcomes in older adults. There is no universally accepted method for measuring gait speed in clinical practice and research, and differences in methods may influence the observed associations between gait speed and health. Moreover, existing methods are sensitive to artifacts, which are present in burgeoning low-cost wearable devices. To overcome this limitation, this paper proposes an artifact-robust gait speed calculation method using spectro-temporal signal processing of accelerometer data. To this end, a new so-called modulation domain gait speed (MD-GS) metric is proposed and tested on data collected from forty older adults performing a 400-meter walk test with a sensor placed on a waist-worn belt. Average gait speed calculation is performed for each participant. Experimental results showed the proposed method achieved very high correlation (<inline-formula> <tex-math notation="LaTeX">\rho =0.98 </tex-math></inline-formula>) with ground truth gait speeds, as well as low errors and error variability (0.05±0.14) m/s, thus substantially outperforming gait speed calculation using a well-known kinematic model. The increased robustness against artifacts, make it a promising solution for aging-in-home applications based on low-cost wearable devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3013996</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4659-7693</orcidid><orcidid>https://orcid.org/0000-0002-4852-6277</orcidid><orcidid>https://orcid.org/0000-0002-5739-2514</orcidid><orcidid>https://orcid.org/0000-0002-7334-3042</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-01, Vol.21 (1), p.520-528 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_9154733 |
source | IEEE Xplore |
subjects | Accelerometer Accelerometers Adults Frequency modulation Gait gait speed Ground truth Low cost Measurement methods Modulation modulation spectrum Noise measurement Older people Signal processing Spectrogram Spectrum analysis telehealth Telemedicine Time-frequency analysis Transforms Wearable computers Wearable technology wearables |
title | Improved Gait Speed Calculation via Modulation Spectral Analysis of Noisy Accelerometer Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Gait%20Speed%20Calculation%20via%20Modulation%20Spectral%20Analysis%20of%20Noisy%20Accelerometer%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Tobon%20V.,%20Diana%20P.&rft.date=2021-01-01&rft.volume=21&rft.issue=1&rft.spage=520&rft.epage=528&rft.pages=520-528&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3013996&rft_dat=%3Cproquest_RIE%3E2468752454%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468752454&rft_id=info:pmid/&rft_ieee_id=9154733&rfr_iscdi=true |