Exploiting Retraining-Based Mixed-Precision Quantization for Low-Cost DNN Accelerator Design
For successful deployment of deep neural networks (DNNs) on resource-constrained devices, retraining-based quantization has been widely adopted to reduce the number of DRAM accesses. By properly setting training parameters, such as batch size and learning rate, bit widths of both weights and activat...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2021-07, Vol.32 (7), p.2925-2938 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!