Exploiting Retraining-Based Mixed-Precision Quantization for Low-Cost DNN Accelerator Design

For successful deployment of deep neural networks (DNNs) on resource-constrained devices, retraining-based quantization has been widely adopted to reduce the number of DRAM accesses. By properly setting training parameters, such as batch size and learning rate, bit widths of both weights and activat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2021-07, Vol.32 (7), p.2925-2938
Hauptverfasser: Kim, Nahsung, Shin, Dongyeob, Choi, Wonseok, Kim, Geonho, Park, Jongsun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!