Nonasymptotic Connectivity of Random Graphs and Their Unions

Graph-theoretic methods have seen wide use throughout the literature on multiagent control and optimization. When communication networks are intermittent and unpredictable, they have been modeled using random communication graphs. When graphs are time varying, it is common to assume that their union...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2021-03, Vol.8 (1), p.391-399
Hauptverfasser: Bjorkman, Beth, Hale, Matthew, Lamkin, Thomas D., Robinson, Benjamin, Thompson, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 1
container_start_page 391
container_title IEEE transactions on control of network systems
container_volume 8
creator Bjorkman, Beth
Hale, Matthew
Lamkin, Thomas D.
Robinson, Benjamin
Thompson, Craig
description Graph-theoretic methods have seen wide use throughout the literature on multiagent control and optimization. When communication networks are intermittent and unpredictable, they have been modeled using random communication graphs. When graphs are time varying, it is common to assume that their unions are connected over time, yet, to the best of our knowledge, there are not any results that determine the number of finite-size random graphs needed to attain a connected union. Therefore, this article bounds the probability that individual random graphs are connected and bounds the same probability for connectedness of unions of random graphs. The random graph model used is a generalization of the classic Erdős-Rényi model, which allows some edges to never appear. Numerical results are presented to illustrate the analytical developments made.
doi_str_mv 10.1109/TCNS.2020.3013715
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9154565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9154565</ieee_id><sourcerecordid>2498672365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-79bb0f6841cb4259b4c2d2e318eef65841afea0af09e211eb1a98c7d5f613f7d3</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOOZ-gPhS8Lk1N2naBnyRolMYE3R7DmmasAyX1KQT9u_N2BCf7j2Xc86FD6FbwAUA5g-rdvlZEExwQTHQGtgFmhBKWM6aGl_-26_RLMYtxhgIS5pO0OPSOxkPu2H0o1VZ653TarQ_djxk3mQf0vV-l82DHDYxSyJbbbQN2dpZ7-INujLyK-rZeU7R-uV51b7mi_f5W_u0yBUp2ZjXvOuwqZoSVFcSxrtSkZ5oCo3WpmLpLo2WWBrMNQHQHUjeqLpnpgJq6p5O0f2pdwj-e6_jKLZ-H1x6KUjJm6omtGLJBSeXCj7GoI0Ygt3JcBCAxZGTOHISR07izCll7k4Zq7X-83NgJUuNv-eQY0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498672365</pqid></control><display><type>article</type><title>Nonasymptotic Connectivity of Random Graphs and Their Unions</title><source>IEEE Electronic Library (IEL)</source><creator>Bjorkman, Beth ; Hale, Matthew ; Lamkin, Thomas D. ; Robinson, Benjamin ; Thompson, Craig</creator><creatorcontrib>Bjorkman, Beth ; Hale, Matthew ; Lamkin, Thomas D. ; Robinson, Benjamin ; Thompson, Craig</creatorcontrib><description>Graph-theoretic methods have seen wide use throughout the literature on multiagent control and optimization. When communication networks are intermittent and unpredictable, they have been modeled using random communication graphs. When graphs are time varying, it is common to assume that their unions are connected over time, yet, to the best of our knowledge, there are not any results that determine the number of finite-size random graphs needed to attain a connected union. Therefore, this article bounds the probability that individual random graphs are connected and bounds the same probability for connectedness of unions of random graphs. The random graph model used is a generalization of the classic Erdős-Rényi model, which allows some edges to never appear. Numerical results are presented to illustrate the analytical developments made.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2020.3013715</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Communication networks ; Complex networks ; Control systems ; Eigenvalues and eigenfunctions ; Electronic mail ; Graph theory ; Graphs ; Laplace equations ; Multi-agent systems ; Multiagent systems ; networked control systems ; Optimization ; Symmetric matrices ; Unions</subject><ispartof>IEEE transactions on control of network systems, 2021-03, Vol.8 (1), p.391-399</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-79bb0f6841cb4259b4c2d2e318eef65841afea0af09e211eb1a98c7d5f613f7d3</cites><orcidid>0000-0003-1504-6338 ; 0000-0003-3991-1680 ; 0000-0002-9391-4543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9154565$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9154565$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bjorkman, Beth</creatorcontrib><creatorcontrib>Hale, Matthew</creatorcontrib><creatorcontrib>Lamkin, Thomas D.</creatorcontrib><creatorcontrib>Robinson, Benjamin</creatorcontrib><creatorcontrib>Thompson, Craig</creatorcontrib><title>Nonasymptotic Connectivity of Random Graphs and Their Unions</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>Graph-theoretic methods have seen wide use throughout the literature on multiagent control and optimization. When communication networks are intermittent and unpredictable, they have been modeled using random communication graphs. When graphs are time varying, it is common to assume that their unions are connected over time, yet, to the best of our knowledge, there are not any results that determine the number of finite-size random graphs needed to attain a connected union. Therefore, this article bounds the probability that individual random graphs are connected and bounds the same probability for connectedness of unions of random graphs. The random graph model used is a generalization of the classic Erdős-Rényi model, which allows some edges to never appear. Numerical results are presented to illustrate the analytical developments made.</description><subject>Communication networks</subject><subject>Complex networks</subject><subject>Control systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electronic mail</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Laplace equations</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>networked control systems</subject><subject>Optimization</subject><subject>Symmetric matrices</subject><subject>Unions</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOOZ-gPhS8Lk1N2naBnyRolMYE3R7DmmasAyX1KQT9u_N2BCf7j2Xc86FD6FbwAUA5g-rdvlZEExwQTHQGtgFmhBKWM6aGl_-26_RLMYtxhgIS5pO0OPSOxkPu2H0o1VZ653TarQ_djxk3mQf0vV-l82DHDYxSyJbbbQN2dpZ7-INujLyK-rZeU7R-uV51b7mi_f5W_u0yBUp2ZjXvOuwqZoSVFcSxrtSkZ5oCo3WpmLpLo2WWBrMNQHQHUjeqLpnpgJq6p5O0f2pdwj-e6_jKLZ-H1x6KUjJm6omtGLJBSeXCj7GoI0Ygt3JcBCAxZGTOHISR07izCll7k4Zq7X-83NgJUuNv-eQY0Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Bjorkman, Beth</creator><creator>Hale, Matthew</creator><creator>Lamkin, Thomas D.</creator><creator>Robinson, Benjamin</creator><creator>Thompson, Craig</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1504-6338</orcidid><orcidid>https://orcid.org/0000-0003-3991-1680</orcidid><orcidid>https://orcid.org/0000-0002-9391-4543</orcidid></search><sort><creationdate>20210301</creationdate><title>Nonasymptotic Connectivity of Random Graphs and Their Unions</title><author>Bjorkman, Beth ; Hale, Matthew ; Lamkin, Thomas D. ; Robinson, Benjamin ; Thompson, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-79bb0f6841cb4259b4c2d2e318eef65841afea0af09e211eb1a98c7d5f613f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communication networks</topic><topic>Complex networks</topic><topic>Control systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electronic mail</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Laplace equations</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>networked control systems</topic><topic>Optimization</topic><topic>Symmetric matrices</topic><topic>Unions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bjorkman, Beth</creatorcontrib><creatorcontrib>Hale, Matthew</creatorcontrib><creatorcontrib>Lamkin, Thomas D.</creatorcontrib><creatorcontrib>Robinson, Benjamin</creatorcontrib><creatorcontrib>Thompson, Craig</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bjorkman, Beth</au><au>Hale, Matthew</au><au>Lamkin, Thomas D.</au><au>Robinson, Benjamin</au><au>Thompson, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonasymptotic Connectivity of Random Graphs and Their Unions</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>391</spage><epage>399</epage><pages>391-399</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>Graph-theoretic methods have seen wide use throughout the literature on multiagent control and optimization. When communication networks are intermittent and unpredictable, they have been modeled using random communication graphs. When graphs are time varying, it is common to assume that their unions are connected over time, yet, to the best of our knowledge, there are not any results that determine the number of finite-size random graphs needed to attain a connected union. Therefore, this article bounds the probability that individual random graphs are connected and bounds the same probability for connectedness of unions of random graphs. The random graph model used is a generalization of the classic Erdős-Rényi model, which allows some edges to never appear. Numerical results are presented to illustrate the analytical developments made.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2020.3013715</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1504-6338</orcidid><orcidid>https://orcid.org/0000-0003-3991-1680</orcidid><orcidid>https://orcid.org/0000-0002-9391-4543</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2021-03, Vol.8 (1), p.391-399
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_ieee_primary_9154565
source IEEE Electronic Library (IEL)
subjects Communication networks
Complex networks
Control systems
Eigenvalues and eigenfunctions
Electronic mail
Graph theory
Graphs
Laplace equations
Multi-agent systems
Multiagent systems
networked control systems
Optimization
Symmetric matrices
Unions
title Nonasymptotic Connectivity of Random Graphs and Their Unions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonasymptotic%20Connectivity%20of%20Random%20Graphs%20and%20Their%20Unions&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Bjorkman,%20Beth&rft.date=2021-03-01&rft.volume=8&rft.issue=1&rft.spage=391&rft.epage=399&rft.pages=391-399&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2020.3013715&rft_dat=%3Cproquest_RIE%3E2498672365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498672365&rft_id=info:pmid/&rft_ieee_id=9154565&rfr_iscdi=true