Data Preprocessing Techniques in Convolutional Neural Network based on Fault Diagnosis towards Rotating Machinery
Rotating machinery plays a critical role in many significant fields. However, the unpredictable machinery faults may lead to the severe damage and losses. Hence, it is of great value to explore the precise approaches for fault diagnosis. With the development of the intelligent fault diagnosis method...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Tang, Shengnan Yuan, Shouqi Zhu, Yong |
description | Rotating machinery plays a critical role in many significant fields. However, the unpredictable machinery faults may lead to the severe damage and losses. Hence, it is of great value to explore the precise approaches for fault diagnosis. With the development of the intelligent fault diagnosis methods based on deep learning, convolutional neural network (CNN) has aroused the attention of researchers in machinery fault diagnosis. In the light of the reduction of difficulty in feature learning and the improvement of final diagnosis accuracy, data preprocessing is necessary and crucial in CNN-based fault diagnosis methods. This review focuses on CNN-based fault diagnosis approaches in rotating machinery. Firstly, data preprocessing methods are overviewed. Then, we emphatically analyze and discuss several main techniques applied in CNN-based intelligent diagnosis, principally including the fast Fourier transform, wavelet transform, data augmentation, S-transform, and cyclic spectral analysis. Finally, the potential challenges and research objects are prospected on data preprocessing in intelligent fault diagnosis of rotary machinery. |
doi_str_mv | 10.1109/ACCESS.2020.3012182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9149875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149875</ieee_id><doaj_id>oai_doaj_org_article_140d13f3338842bf8278bdac96c2f024</doaj_id><sourcerecordid>2454641844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-82f561385f44d88e3e033b66a3e3bce605a725d73431bc24d45259cc63d7234f3</originalsourceid><addsrcrecordid>eNpNUcFO3TAQjKpWKqJ8ARdLPb9X22s7zhEFaJGgRUDP1sZ2Hn5NY7CdIv6ehCDUvcxqtDMrzVTVMaNbxmjz7aRtz25vt5xyugXKONP8Q3XAmWo2IEF9_G__XB3lvKfz6JmS9UH1eIoFyXXyDylan3MYd-TO2_sxPE4-kzCSNo7_4jCVEEccyE8_pVcoTzH9IR1m70gcyTlOQyGnAXdjzCGTEp8wuUxuYsGymF6hvQ-jT89fqk89DtkfveFh9fv87K79sbn89f2iPbncWCF12WjeS8VAy14Ip7UHTwE6pRA8dNYrKrHm0tUggHWWCyckl421ClzNQfRwWF2svi7i3jyk8BfTs4kYzCsR085gKsEO3jBBHYMeALQWvOs1r3Xn0DbK8p5yMXt9Xb3mlJZcitnHKc15ZMOFFEowLZYrWK9sijkn379_ZdQsVZm1KrNUZd6qmlXHqyp4798VDRONriW8AAXkj3o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641844</pqid></control><display><type>article</type><title>Data Preprocessing Techniques in Convolutional Neural Network based on Fault Diagnosis towards Rotating Machinery</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Tang, Shengnan ; Yuan, Shouqi ; Zhu, Yong</creator><creatorcontrib>Tang, Shengnan ; Yuan, Shouqi ; Zhu, Yong</creatorcontrib><description>Rotating machinery plays a critical role in many significant fields. However, the unpredictable machinery faults may lead to the severe damage and losses. Hence, it is of great value to explore the precise approaches for fault diagnosis. With the development of the intelligent fault diagnosis methods based on deep learning, convolutional neural network (CNN) has aroused the attention of researchers in machinery fault diagnosis. In the light of the reduction of difficulty in feature learning and the improvement of final diagnosis accuracy, data preprocessing is necessary and crucial in CNN-based fault diagnosis methods. This review focuses on CNN-based fault diagnosis approaches in rotating machinery. Firstly, data preprocessing methods are overviewed. Then, we emphatically analyze and discuss several main techniques applied in CNN-based intelligent diagnosis, principally including the fast Fourier transform, wavelet transform, data augmentation, S-transform, and cyclic spectral analysis. Finally, the potential challenges and research objects are prospected on data preprocessing in intelligent fault diagnosis of rotary machinery.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3012182</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolution ; convolutional neural network ; Data preprocessing ; Fast Fourier transformations ; Fault diagnosis ; Feature extraction ; Fourier transforms ; intelligent fault diagnosis ; Machinery ; Neural networks ; Preprocessing ; Rotating machinery ; Spectrum analysis ; Transforms ; Two dimensional displays ; Wavelet transforms</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-82f561385f44d88e3e033b66a3e3bce605a725d73431bc24d45259cc63d7234f3</citedby><cites>FETCH-LOGICAL-c458t-82f561385f44d88e3e033b66a3e3bce605a725d73431bc24d45259cc63d7234f3</cites><orcidid>0000-0001-6217-088X ; 0000-0002-6417-0143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149875$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Tang, Shengnan</creatorcontrib><creatorcontrib>Yuan, Shouqi</creatorcontrib><creatorcontrib>Zhu, Yong</creatorcontrib><title>Data Preprocessing Techniques in Convolutional Neural Network based on Fault Diagnosis towards Rotating Machinery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Rotating machinery plays a critical role in many significant fields. However, the unpredictable machinery faults may lead to the severe damage and losses. Hence, it is of great value to explore the precise approaches for fault diagnosis. With the development of the intelligent fault diagnosis methods based on deep learning, convolutional neural network (CNN) has aroused the attention of researchers in machinery fault diagnosis. In the light of the reduction of difficulty in feature learning and the improvement of final diagnosis accuracy, data preprocessing is necessary and crucial in CNN-based fault diagnosis methods. This review focuses on CNN-based fault diagnosis approaches in rotating machinery. Firstly, data preprocessing methods are overviewed. Then, we emphatically analyze and discuss several main techniques applied in CNN-based intelligent diagnosis, principally including the fast Fourier transform, wavelet transform, data augmentation, S-transform, and cyclic spectral analysis. Finally, the potential challenges and research objects are prospected on data preprocessing in intelligent fault diagnosis of rotary machinery.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>convolutional neural network</subject><subject>Data preprocessing</subject><subject>Fast Fourier transformations</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>intelligent fault diagnosis</subject><subject>Machinery</subject><subject>Neural networks</subject><subject>Preprocessing</subject><subject>Rotating machinery</subject><subject>Spectrum analysis</subject><subject>Transforms</subject><subject>Two dimensional displays</subject><subject>Wavelet transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFO3TAQjKpWKqJ8ARdLPb9X22s7zhEFaJGgRUDP1sZ2Hn5NY7CdIv6ehCDUvcxqtDMrzVTVMaNbxmjz7aRtz25vt5xyugXKONP8Q3XAmWo2IEF9_G__XB3lvKfz6JmS9UH1eIoFyXXyDylan3MYd-TO2_sxPE4-kzCSNo7_4jCVEEccyE8_pVcoTzH9IR1m70gcyTlOQyGnAXdjzCGTEp8wuUxuYsGymF6hvQ-jT89fqk89DtkfveFh9fv87K79sbn89f2iPbncWCF12WjeS8VAy14Ip7UHTwE6pRA8dNYrKrHm0tUggHWWCyckl421ClzNQfRwWF2svi7i3jyk8BfTs4kYzCsR085gKsEO3jBBHYMeALQWvOs1r3Xn0DbK8p5yMXt9Xb3mlJZcitnHKc15ZMOFFEowLZYrWK9sijkn379_ZdQsVZm1KrNUZd6qmlXHqyp4798VDRONriW8AAXkj3o</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Tang, Shengnan</creator><creator>Yuan, Shouqi</creator><creator>Zhu, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6217-088X</orcidid><orcidid>https://orcid.org/0000-0002-6417-0143</orcidid></search><sort><creationdate>20200101</creationdate><title>Data Preprocessing Techniques in Convolutional Neural Network based on Fault Diagnosis towards Rotating Machinery</title><author>Tang, Shengnan ; Yuan, Shouqi ; Zhu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-82f561385f44d88e3e033b66a3e3bce605a725d73431bc24d45259cc63d7234f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>convolutional neural network</topic><topic>Data preprocessing</topic><topic>Fast Fourier transformations</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>intelligent fault diagnosis</topic><topic>Machinery</topic><topic>Neural networks</topic><topic>Preprocessing</topic><topic>Rotating machinery</topic><topic>Spectrum analysis</topic><topic>Transforms</topic><topic>Two dimensional displays</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Shengnan</creatorcontrib><creatorcontrib>Yuan, Shouqi</creatorcontrib><creatorcontrib>Zhu, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Shengnan</au><au>Yuan, Shouqi</au><au>Zhu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Preprocessing Techniques in Convolutional Neural Network based on Fault Diagnosis towards Rotating Machinery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Rotating machinery plays a critical role in many significant fields. However, the unpredictable machinery faults may lead to the severe damage and losses. Hence, it is of great value to explore the precise approaches for fault diagnosis. With the development of the intelligent fault diagnosis methods based on deep learning, convolutional neural network (CNN) has aroused the attention of researchers in machinery fault diagnosis. In the light of the reduction of difficulty in feature learning and the improvement of final diagnosis accuracy, data preprocessing is necessary and crucial in CNN-based fault diagnosis methods. This review focuses on CNN-based fault diagnosis approaches in rotating machinery. Firstly, data preprocessing methods are overviewed. Then, we emphatically analyze and discuss several main techniques applied in CNN-based intelligent diagnosis, principally including the fast Fourier transform, wavelet transform, data augmentation, S-transform, and cyclic spectral analysis. Finally, the potential challenges and research objects are prospected on data preprocessing in intelligent fault diagnosis of rotary machinery.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3012182</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6217-088X</orcidid><orcidid>https://orcid.org/0000-0002-6417-0143</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9149875 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Artificial neural networks Convolution convolutional neural network Data preprocessing Fast Fourier transformations Fault diagnosis Feature extraction Fourier transforms intelligent fault diagnosis Machinery Neural networks Preprocessing Rotating machinery Spectrum analysis Transforms Two dimensional displays Wavelet transforms |
title | Data Preprocessing Techniques in Convolutional Neural Network based on Fault Diagnosis towards Rotating Machinery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Preprocessing%20Techniques%20in%20Convolutional%20Neural%20Network%20based%20on%20Fault%20Diagnosis%20towards%20Rotating%20Machinery&rft.jtitle=IEEE%20access&rft.au=Tang,%20Shengnan&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3012182&rft_dat=%3Cproquest_ieee_%3E2454641844%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454641844&rft_id=info:pmid/&rft_ieee_id=9149875&rft_doaj_id=oai_doaj_org_article_140d13f3338842bf8278bdac96c2f024&rfr_iscdi=true |