Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters

This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.140632-140642
Hauptverfasser: Kim, Sang-Hun, Yoo, Dong-Yeon, An, Sang-Won, Park, Ye-Seul, Lee, Jung-Won, Lee, Kyo-Beum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140642
container_issue
container_start_page 140632
container_title IEEE access
container_volume 8
creator Kim, Sang-Hun
Yoo, Dong-Yeon
An, Sang-Won
Park, Ye-Seul
Lee, Jung-Won
Lee, Kyo-Beum
description This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results.
doi_str_mv 10.1109/ACCESS.2020.3011730
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9146864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9146864</ieee_id><doaj_id>oai_doaj_org_article_7b3deecf6d814edf98e473f9282f788f</doaj_id><sourcerecordid>2454640900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c0fcb4d3ce7eaad65373dbe3b868fc6d6b7a0a04ba9a6340c5ff3def5906baae3</originalsourceid><addsrcrecordid>eNpNkU9P4zAQxaMVSCDoJ-Biac8p49hxnGOV5U8llkUqnC3HHrMpIS6OU8S3X5cgtHOZ0fj93lh6WXZBYUkp1JerprnabJYFFLBkQGnF4Ed2WlBR56xk4ui_-SRbjOMWUsm0KqvT7OVaT30kvzCiiZ0fyG-Mf70lT2M3PBNNGj_sfT99Pt3jFHSfWnz34YU4H8jtRxs6S1aJ3eNBEJMif_DdEEnT69cdWrIe9hgihvE8O3a6H3Hx1c-yp-urx-Y2v_tzs25Wd7nhIGNuwJmWW2awQq2tKFnFbIuslUI6I6xoKw0aeKtrLRgHUzrHLLqyBtFqjewsW8--1uut2oXuVYcP5XWnPhc-PCsdYmd6VFWbSDROWEk5WldL5BVzdSELV0npktfP2WsX_NuEY1RbP4UhfV8VvOSCQw2QVGxWmeDHMaD7vkpBHUJSc0jqEJL6CilRFzPVIeI3UVMupODsH707j84</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454640900</pqid></control><display><type>article</type><title>Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Kim, Sang-Hun ; Yoo, Dong-Yeon ; An, Sang-Won ; Park, Ye-Seul ; Lee, Jung-Won ; Lee, Kyo-Beum</creator><creatorcontrib>Kim, Sang-Hun ; Yoo, Dong-Yeon ; An, Sang-Won ; Park, Ye-Seul ; Lee, Jung-Won ; Lee, Kyo-Beum</creatorcontrib><description>This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3011730</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Circuit faults ; Circuits ; Clamping ; Convolution ; convolution neural network ; deep learning ; Fault detection ; Feature extraction ; hybrid active neutral-point inverter ; Insulated gate bipolar transistors ; Inverters ; Neural networks ; Open-switch fault detection ; Phase current ; Power converters ; Silicon carbide ; Switches</subject><ispartof>IEEE access, 2020, Vol.8, p.140632-140642</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c0fcb4d3ce7eaad65373dbe3b868fc6d6b7a0a04ba9a6340c5ff3def5906baae3</citedby><cites>FETCH-LOGICAL-c408t-c0fcb4d3ce7eaad65373dbe3b868fc6d6b7a0a04ba9a6340c5ff3def5906baae3</cites><orcidid>0000-0001-6211-7034 ; 0000-0001-8922-063X ; 0000-0002-5780-0661 ; 0000-0002-2125-9500 ; 0000-0003-2584-7489 ; 0000-0003-4959-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9146864$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kim, Sang-Hun</creatorcontrib><creatorcontrib>Yoo, Dong-Yeon</creatorcontrib><creatorcontrib>An, Sang-Won</creatorcontrib><creatorcontrib>Park, Ye-Seul</creatorcontrib><creatorcontrib>Lee, Jung-Won</creatorcontrib><creatorcontrib>Lee, Kyo-Beum</creatorcontrib><title>Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results.</description><subject>Artificial neural networks</subject><subject>Circuit faults</subject><subject>Circuits</subject><subject>Clamping</subject><subject>Convolution</subject><subject>convolution neural network</subject><subject>deep learning</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>hybrid active neutral-point inverter</subject><subject>Insulated gate bipolar transistors</subject><subject>Inverters</subject><subject>Neural networks</subject><subject>Open-switch fault detection</subject><subject>Phase current</subject><subject>Power converters</subject><subject>Silicon carbide</subject><subject>Switches</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P4zAQxaMVSCDoJ-Biac8p49hxnGOV5U8llkUqnC3HHrMpIS6OU8S3X5cgtHOZ0fj93lh6WXZBYUkp1JerprnabJYFFLBkQGnF4Ed2WlBR56xk4ui_-SRbjOMWUsm0KqvT7OVaT30kvzCiiZ0fyG-Mf70lT2M3PBNNGj_sfT99Pt3jFHSfWnz34YU4H8jtRxs6S1aJ3eNBEJMif_DdEEnT69cdWrIe9hgihvE8O3a6H3Hx1c-yp-urx-Y2v_tzs25Wd7nhIGNuwJmWW2awQq2tKFnFbIuslUI6I6xoKw0aeKtrLRgHUzrHLLqyBtFqjewsW8--1uut2oXuVYcP5XWnPhc-PCsdYmd6VFWbSDROWEk5WldL5BVzdSELV0npktfP2WsX_NuEY1RbP4UhfV8VvOSCQw2QVGxWmeDHMaD7vkpBHUJSc0jqEJL6CilRFzPVIeI3UVMupODsH707j84</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kim, Sang-Hun</creator><creator>Yoo, Dong-Yeon</creator><creator>An, Sang-Won</creator><creator>Park, Ye-Seul</creator><creator>Lee, Jung-Won</creator><creator>Lee, Kyo-Beum</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6211-7034</orcidid><orcidid>https://orcid.org/0000-0001-8922-063X</orcidid><orcidid>https://orcid.org/0000-0002-5780-0661</orcidid><orcidid>https://orcid.org/0000-0002-2125-9500</orcidid><orcidid>https://orcid.org/0000-0003-2584-7489</orcidid><orcidid>https://orcid.org/0000-0003-4959-2097</orcidid></search><sort><creationdate>2020</creationdate><title>Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters</title><author>Kim, Sang-Hun ; Yoo, Dong-Yeon ; An, Sang-Won ; Park, Ye-Seul ; Lee, Jung-Won ; Lee, Kyo-Beum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c0fcb4d3ce7eaad65373dbe3b868fc6d6b7a0a04ba9a6340c5ff3def5906baae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Circuit faults</topic><topic>Circuits</topic><topic>Clamping</topic><topic>Convolution</topic><topic>convolution neural network</topic><topic>deep learning</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>hybrid active neutral-point inverter</topic><topic>Insulated gate bipolar transistors</topic><topic>Inverters</topic><topic>Neural networks</topic><topic>Open-switch fault detection</topic><topic>Phase current</topic><topic>Power converters</topic><topic>Silicon carbide</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sang-Hun</creatorcontrib><creatorcontrib>Yoo, Dong-Yeon</creatorcontrib><creatorcontrib>An, Sang-Won</creatorcontrib><creatorcontrib>Park, Ye-Seul</creatorcontrib><creatorcontrib>Lee, Jung-Won</creatorcontrib><creatorcontrib>Lee, Kyo-Beum</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sang-Hun</au><au>Yoo, Dong-Yeon</au><au>An, Sang-Won</au><au>Park, Ye-Seul</au><au>Lee, Jung-Won</au><au>Lee, Kyo-Beum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>140632</spage><epage>140642</epage><pages>140632-140642</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3011730</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6211-7034</orcidid><orcidid>https://orcid.org/0000-0001-8922-063X</orcidid><orcidid>https://orcid.org/0000-0002-5780-0661</orcidid><orcidid>https://orcid.org/0000-0002-2125-9500</orcidid><orcidid>https://orcid.org/0000-0003-2584-7489</orcidid><orcidid>https://orcid.org/0000-0003-4959-2097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.140632-140642
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9146864
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Artificial neural networks
Circuit faults
Circuits
Clamping
Convolution
convolution neural network
deep learning
Fault detection
Feature extraction
hybrid active neutral-point inverter
Insulated gate bipolar transistors
Inverters
Neural networks
Open-switch fault detection
Phase current
Power converters
Silicon carbide
Switches
title Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Detection%20Method%20Using%20a%20Convolution%20Neural%20Network%20for%20Hybrid%20Active%20Neutral-Point%20Clamped%20Inverters&rft.jtitle=IEEE%20access&rft.au=Kim,%20Sang-Hun&rft.date=2020&rft.volume=8&rft.spage=140632&rft.epage=140642&rft.pages=140632-140642&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3011730&rft_dat=%3Cproquest_ieee_%3E2454640900%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454640900&rft_id=info:pmid/&rft_ieee_id=9146864&rft_doaj_id=oai_doaj_org_article_7b3deecf6d814edf98e473f9282f788f&rfr_iscdi=true