Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters
This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability o...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.140632-140642 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140642 |
---|---|
container_issue | |
container_start_page | 140632 |
container_title | IEEE access |
container_volume | 8 |
creator | Kim, Sang-Hun Yoo, Dong-Yeon An, Sang-Won Park, Ye-Seul Lee, Jung-Won Lee, Kyo-Beum |
description | This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results. |
doi_str_mv | 10.1109/ACCESS.2020.3011730 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9146864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9146864</ieee_id><doaj_id>oai_doaj_org_article_7b3deecf6d814edf98e473f9282f788f</doaj_id><sourcerecordid>2454640900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c0fcb4d3ce7eaad65373dbe3b868fc6d6b7a0a04ba9a6340c5ff3def5906baae3</originalsourceid><addsrcrecordid>eNpNkU9P4zAQxaMVSCDoJ-Biac8p49hxnGOV5U8llkUqnC3HHrMpIS6OU8S3X5cgtHOZ0fj93lh6WXZBYUkp1JerprnabJYFFLBkQGnF4Ed2WlBR56xk4ui_-SRbjOMWUsm0KqvT7OVaT30kvzCiiZ0fyG-Mf70lT2M3PBNNGj_sfT99Pt3jFHSfWnz34YU4H8jtRxs6S1aJ3eNBEJMif_DdEEnT69cdWrIe9hgihvE8O3a6H3Hx1c-yp-urx-Y2v_tzs25Wd7nhIGNuwJmWW2awQq2tKFnFbIuslUI6I6xoKw0aeKtrLRgHUzrHLLqyBtFqjewsW8--1uut2oXuVYcP5XWnPhc-PCsdYmd6VFWbSDROWEk5WldL5BVzdSELV0npktfP2WsX_NuEY1RbP4UhfV8VvOSCQw2QVGxWmeDHMaD7vkpBHUJSc0jqEJL6CilRFzPVIeI3UVMupODsH707j84</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454640900</pqid></control><display><type>article</type><title>Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Kim, Sang-Hun ; Yoo, Dong-Yeon ; An, Sang-Won ; Park, Ye-Seul ; Lee, Jung-Won ; Lee, Kyo-Beum</creator><creatorcontrib>Kim, Sang-Hun ; Yoo, Dong-Yeon ; An, Sang-Won ; Park, Ye-Seul ; Lee, Jung-Won ; Lee, Kyo-Beum</creatorcontrib><description>This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3011730</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Circuit faults ; Circuits ; Clamping ; Convolution ; convolution neural network ; deep learning ; Fault detection ; Feature extraction ; hybrid active neutral-point inverter ; Insulated gate bipolar transistors ; Inverters ; Neural networks ; Open-switch fault detection ; Phase current ; Power converters ; Silicon carbide ; Switches</subject><ispartof>IEEE access, 2020, Vol.8, p.140632-140642</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c0fcb4d3ce7eaad65373dbe3b868fc6d6b7a0a04ba9a6340c5ff3def5906baae3</citedby><cites>FETCH-LOGICAL-c408t-c0fcb4d3ce7eaad65373dbe3b868fc6d6b7a0a04ba9a6340c5ff3def5906baae3</cites><orcidid>0000-0001-6211-7034 ; 0000-0001-8922-063X ; 0000-0002-5780-0661 ; 0000-0002-2125-9500 ; 0000-0003-2584-7489 ; 0000-0003-4959-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9146864$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kim, Sang-Hun</creatorcontrib><creatorcontrib>Yoo, Dong-Yeon</creatorcontrib><creatorcontrib>An, Sang-Won</creatorcontrib><creatorcontrib>Park, Ye-Seul</creatorcontrib><creatorcontrib>Lee, Jung-Won</creatorcontrib><creatorcontrib>Lee, Kyo-Beum</creatorcontrib><title>Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results.</description><subject>Artificial neural networks</subject><subject>Circuit faults</subject><subject>Circuits</subject><subject>Clamping</subject><subject>Convolution</subject><subject>convolution neural network</subject><subject>deep learning</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>hybrid active neutral-point inverter</subject><subject>Insulated gate bipolar transistors</subject><subject>Inverters</subject><subject>Neural networks</subject><subject>Open-switch fault detection</subject><subject>Phase current</subject><subject>Power converters</subject><subject>Silicon carbide</subject><subject>Switches</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P4zAQxaMVSCDoJ-Biac8p49hxnGOV5U8llkUqnC3HHrMpIS6OU8S3X5cgtHOZ0fj93lh6WXZBYUkp1JerprnabJYFFLBkQGnF4Ed2WlBR56xk4ui_-SRbjOMWUsm0KqvT7OVaT30kvzCiiZ0fyG-Mf70lT2M3PBNNGj_sfT99Pt3jFHSfWnz34YU4H8jtRxs6S1aJ3eNBEJMif_DdEEnT69cdWrIe9hgihvE8O3a6H3Hx1c-yp-urx-Y2v_tzs25Wd7nhIGNuwJmWW2awQq2tKFnFbIuslUI6I6xoKw0aeKtrLRgHUzrHLLqyBtFqjewsW8--1uut2oXuVYcP5XWnPhc-PCsdYmd6VFWbSDROWEk5WldL5BVzdSELV0npktfP2WsX_NuEY1RbP4UhfV8VvOSCQw2QVGxWmeDHMaD7vkpBHUJSc0jqEJL6CilRFzPVIeI3UVMupODsH707j84</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kim, Sang-Hun</creator><creator>Yoo, Dong-Yeon</creator><creator>An, Sang-Won</creator><creator>Park, Ye-Seul</creator><creator>Lee, Jung-Won</creator><creator>Lee, Kyo-Beum</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6211-7034</orcidid><orcidid>https://orcid.org/0000-0001-8922-063X</orcidid><orcidid>https://orcid.org/0000-0002-5780-0661</orcidid><orcidid>https://orcid.org/0000-0002-2125-9500</orcidid><orcidid>https://orcid.org/0000-0003-2584-7489</orcidid><orcidid>https://orcid.org/0000-0003-4959-2097</orcidid></search><sort><creationdate>2020</creationdate><title>Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters</title><author>Kim, Sang-Hun ; Yoo, Dong-Yeon ; An, Sang-Won ; Park, Ye-Seul ; Lee, Jung-Won ; Lee, Kyo-Beum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c0fcb4d3ce7eaad65373dbe3b868fc6d6b7a0a04ba9a6340c5ff3def5906baae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Circuit faults</topic><topic>Circuits</topic><topic>Clamping</topic><topic>Convolution</topic><topic>convolution neural network</topic><topic>deep learning</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>hybrid active neutral-point inverter</topic><topic>Insulated gate bipolar transistors</topic><topic>Inverters</topic><topic>Neural networks</topic><topic>Open-switch fault detection</topic><topic>Phase current</topic><topic>Power converters</topic><topic>Silicon carbide</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sang-Hun</creatorcontrib><creatorcontrib>Yoo, Dong-Yeon</creatorcontrib><creatorcontrib>An, Sang-Won</creatorcontrib><creatorcontrib>Park, Ye-Seul</creatorcontrib><creatorcontrib>Lee, Jung-Won</creatorcontrib><creatorcontrib>Lee, Kyo-Beum</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sang-Hun</au><au>Yoo, Dong-Yeon</au><au>An, Sang-Won</au><au>Park, Ye-Seul</au><au>Lee, Jung-Won</au><au>Lee, Kyo-Beum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>140632</spage><epage>140642</epage><pages>140632-140642</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3011730</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6211-7034</orcidid><orcidid>https://orcid.org/0000-0001-8922-063X</orcidid><orcidid>https://orcid.org/0000-0002-5780-0661</orcidid><orcidid>https://orcid.org/0000-0002-2125-9500</orcidid><orcidid>https://orcid.org/0000-0003-2584-7489</orcidid><orcidid>https://orcid.org/0000-0003-4959-2097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.140632-140642 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9146864 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | Artificial neural networks Circuit faults Circuits Clamping Convolution convolution neural network deep learning Fault detection Feature extraction hybrid active neutral-point inverter Insulated gate bipolar transistors Inverters Neural networks Open-switch fault detection Phase current Power converters Silicon carbide Switches |
title | Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Detection%20Method%20Using%20a%20Convolution%20Neural%20Network%20for%20Hybrid%20Active%20Neutral-Point%20Clamped%20Inverters&rft.jtitle=IEEE%20access&rft.au=Kim,%20Sang-Hun&rft.date=2020&rft.volume=8&rft.spage=140632&rft.epage=140642&rft.pages=140632-140642&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3011730&rft_dat=%3Cproquest_ieee_%3E2454640900%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454640900&rft_id=info:pmid/&rft_ieee_id=9146864&rft_doaj_id=oai_doaj_org_article_7b3deecf6d814edf98e473f9282f788f&rfr_iscdi=true |