Throughput Scaling of Covert Communication Over Wireless Adhoc Networks
We consider the problem of covert communication over wireless adhoc networks in which (roughly) n legitimate nodes (LNs) and n^{\kappa } for \kappa > 0 non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with it...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2020-12, Vol.66 (12), p.7684-7701 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7701 |
---|---|
container_issue | 12 |
container_start_page | 7684 |
container_title | IEEE transactions on information theory |
container_volume | 66 |
creator | Cho, Kang-Hee Lee, Si-Hyeon Tan, Vincent Y. F. |
description | We consider the problem of covert communication over wireless adhoc networks in which (roughly) n legitimate nodes (LNs) and n^{\kappa } for \kappa > 0 non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with its intended destination node while ensuring that every WN is unable to detect the presence of the communication. In this scenario, we study the throughput scaling law. Due to the covert communication constraint, the transmit powers are necessarily limited. Under this condition, we introduce a preservation region around each WN. This region serves to prevent transmission from the LNs and to increase the transmit power of the LNs outside the preservation regions. For the achievability results, multi-hop (MH), hierarchical cooperation (HC), and hybrid HC-MH schemes are utilized with some appropriate modifications. In the proposed MH and hybrid schemes, because the preservation regions may impede communication along direct data paths, the data paths are suitably modified by taking a detour around each preservation region. To avoid the concentration of detours resulting extra relaying burdens, we distribute the detours evenly over a wide region. In the proposed HC scheme, we control the symbol power and the scheduling of distributed multiple-input multiple-output transmission. We also present upper bounds on the throughput scaling under the assumption that every active LN consumes the same average transmit power over the time period in which the WNs observe the channel outputs. For 0 < \kappa < 1 , these upper bounds match with the achievable throughput scalings. |
doi_str_mv | 10.1109/TIT.2020.3011895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9146783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9146783</ieee_id><sourcerecordid>2465435657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-88d18dbbc720da0a54f9f156dc337391a14f237270f3bcf9f3a2af55aac7d5d83</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC562ZfDTJsRSthWIPrngMaTZpt7abmuwq_vdGWjw9Zua9GeaH0C3gEQBWD9W8GhFM8IhiAKn4GRoA56JUY87O0QBjkKViTF6iq5S2uWQcyADNqk0M_Xpz6Lvi1Zpd066L4Itp-HKxy7Lf921jTdeEtljmXvHeRLdzKRWTehNs8eK67xA_0jW68GaX3M1Jh-jt6bGaPpeL5Ww-nSxKSxR0pZQ1yHq1soLg2mDDmVce-Li2lAqqwADzhAoisKcrm2fUEOM5N8aKmteSDtH9ce8hhs_epU5vQx_bfFITll-lfMxFduGjy8aQUnReH2KzN_FHA9Z_uHTGpf9w6ROuHLk7Rhrn3L9dARsLSekvg6FmTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465435657</pqid></control><display><type>article</type><title>Throughput Scaling of Covert Communication Over Wireless Adhoc Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Cho, Kang-Hee ; Lee, Si-Hyeon ; Tan, Vincent Y. F.</creator><creatorcontrib>Cho, Kang-Hee ; Lee, Si-Hyeon ; Tan, Vincent Y. F.</creatorcontrib><description><![CDATA[We consider the problem of covert communication over wireless adhoc networks in which (roughly) <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> legitimate nodes (LNs) and <inline-formula> <tex-math notation="LaTeX">n^{\kappa } </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">\kappa > 0 </tex-math></inline-formula> non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with its intended destination node while ensuring that every WN is unable to detect the presence of the communication. In this scenario, we study the throughput scaling law. Due to the covert communication constraint, the transmit powers are necessarily limited. Under this condition, we introduce a preservation region around each WN. This region serves to prevent transmission from the LNs and to increase the transmit power of the LNs outside the preservation regions. For the achievability results, multi-hop (MH), hierarchical cooperation (HC), and hybrid HC-MH schemes are utilized with some appropriate modifications. In the proposed MH and hybrid schemes, because the preservation regions may impede communication along direct data paths, the data paths are suitably modified by taking a detour around each preservation region. To avoid the concentration of detours resulting extra relaying burdens, we distribute the detours evenly over a wide region. In the proposed HC scheme, we control the symbol power and the scheduling of distributed multiple-input multiple-output transmission. We also present upper bounds on the throughput scaling under the assumption that every active LN consumes the same average transmit power over the time period in which the WNs observe the channel outputs. For <inline-formula> <tex-math notation="LaTeX">0 < \kappa < 1 </tex-math></inline-formula>, these upper bounds match with the achievable throughput scalings.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3011895</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ad hoc networks ; capacity scaling law ; Communication ; Covert communication ; Data paths ; Gaussian noise ; Indexes ; low probability of detection ; Nickel ; Nodes ; Power consumption ; Scaling laws ; Throughput ; Upper bound ; Upper bounds ; wireless adhoc networks ; Wireless communication ; Wireless communications ; Wireless networks</subject><ispartof>IEEE transactions on information theory, 2020-12, Vol.66 (12), p.7684-7701</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-88d18dbbc720da0a54f9f156dc337391a14f237270f3bcf9f3a2af55aac7d5d83</citedby><cites>FETCH-LOGICAL-c291t-88d18dbbc720da0a54f9f156dc337391a14f237270f3bcf9f3a2af55aac7d5d83</cites><orcidid>0000-0002-4362-5970 ; 0000-0002-5008-4527 ; 0000-0003-0199-8776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9146783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9146783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cho, Kang-Hee</creatorcontrib><creatorcontrib>Lee, Si-Hyeon</creatorcontrib><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><title>Throughput Scaling of Covert Communication Over Wireless Adhoc Networks</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider the problem of covert communication over wireless adhoc networks in which (roughly) <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> legitimate nodes (LNs) and <inline-formula> <tex-math notation="LaTeX">n^{\kappa } </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">\kappa > 0 </tex-math></inline-formula> non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with its intended destination node while ensuring that every WN is unable to detect the presence of the communication. In this scenario, we study the throughput scaling law. Due to the covert communication constraint, the transmit powers are necessarily limited. Under this condition, we introduce a preservation region around each WN. This region serves to prevent transmission from the LNs and to increase the transmit power of the LNs outside the preservation regions. For the achievability results, multi-hop (MH), hierarchical cooperation (HC), and hybrid HC-MH schemes are utilized with some appropriate modifications. In the proposed MH and hybrid schemes, because the preservation regions may impede communication along direct data paths, the data paths are suitably modified by taking a detour around each preservation region. To avoid the concentration of detours resulting extra relaying burdens, we distribute the detours evenly over a wide region. In the proposed HC scheme, we control the symbol power and the scheduling of distributed multiple-input multiple-output transmission. We also present upper bounds on the throughput scaling under the assumption that every active LN consumes the same average transmit power over the time period in which the WNs observe the channel outputs. For <inline-formula> <tex-math notation="LaTeX">0 < \kappa < 1 </tex-math></inline-formula>, these upper bounds match with the achievable throughput scalings.]]></description><subject>Ad hoc networks</subject><subject>capacity scaling law</subject><subject>Communication</subject><subject>Covert communication</subject><subject>Data paths</subject><subject>Gaussian noise</subject><subject>Indexes</subject><subject>low probability of detection</subject><subject>Nickel</subject><subject>Nodes</subject><subject>Power consumption</subject><subject>Scaling laws</subject><subject>Throughput</subject><subject>Upper bound</subject><subject>Upper bounds</subject><subject>wireless adhoc networks</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC562ZfDTJsRSthWIPrngMaTZpt7abmuwq_vdGWjw9Zua9GeaH0C3gEQBWD9W8GhFM8IhiAKn4GRoA56JUY87O0QBjkKViTF6iq5S2uWQcyADNqk0M_Xpz6Lvi1Zpd066L4Itp-HKxy7Lf921jTdeEtljmXvHeRLdzKRWTehNs8eK67xA_0jW68GaX3M1Jh-jt6bGaPpeL5Ww-nSxKSxR0pZQ1yHq1soLg2mDDmVce-Li2lAqqwADzhAoisKcrm2fUEOM5N8aKmteSDtH9ce8hhs_epU5vQx_bfFITll-lfMxFduGjy8aQUnReH2KzN_FHA9Z_uHTGpf9w6ROuHLk7Rhrn3L9dARsLSekvg6FmTw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Cho, Kang-Hee</creator><creator>Lee, Si-Hyeon</creator><creator>Tan, Vincent Y. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4362-5970</orcidid><orcidid>https://orcid.org/0000-0002-5008-4527</orcidid><orcidid>https://orcid.org/0000-0003-0199-8776</orcidid></search><sort><creationdate>20201201</creationdate><title>Throughput Scaling of Covert Communication Over Wireless Adhoc Networks</title><author>Cho, Kang-Hee ; Lee, Si-Hyeon ; Tan, Vincent Y. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-88d18dbbc720da0a54f9f156dc337391a14f237270f3bcf9f3a2af55aac7d5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ad hoc networks</topic><topic>capacity scaling law</topic><topic>Communication</topic><topic>Covert communication</topic><topic>Data paths</topic><topic>Gaussian noise</topic><topic>Indexes</topic><topic>low probability of detection</topic><topic>Nickel</topic><topic>Nodes</topic><topic>Power consumption</topic><topic>Scaling laws</topic><topic>Throughput</topic><topic>Upper bound</topic><topic>Upper bounds</topic><topic>wireless adhoc networks</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Kang-Hee</creatorcontrib><creatorcontrib>Lee, Si-Hyeon</creatorcontrib><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Kang-Hee</au><au>Lee, Si-Hyeon</au><au>Tan, Vincent Y. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Throughput Scaling of Covert Communication Over Wireless Adhoc Networks</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>66</volume><issue>12</issue><spage>7684</spage><epage>7701</epage><pages>7684-7701</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider the problem of covert communication over wireless adhoc networks in which (roughly) <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> legitimate nodes (LNs) and <inline-formula> <tex-math notation="LaTeX">n^{\kappa } </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">\kappa > 0 </tex-math></inline-formula> non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with its intended destination node while ensuring that every WN is unable to detect the presence of the communication. In this scenario, we study the throughput scaling law. Due to the covert communication constraint, the transmit powers are necessarily limited. Under this condition, we introduce a preservation region around each WN. This region serves to prevent transmission from the LNs and to increase the transmit power of the LNs outside the preservation regions. For the achievability results, multi-hop (MH), hierarchical cooperation (HC), and hybrid HC-MH schemes are utilized with some appropriate modifications. In the proposed MH and hybrid schemes, because the preservation regions may impede communication along direct data paths, the data paths are suitably modified by taking a detour around each preservation region. To avoid the concentration of detours resulting extra relaying burdens, we distribute the detours evenly over a wide region. In the proposed HC scheme, we control the symbol power and the scheduling of distributed multiple-input multiple-output transmission. We also present upper bounds on the throughput scaling under the assumption that every active LN consumes the same average transmit power over the time period in which the WNs observe the channel outputs. For <inline-formula> <tex-math notation="LaTeX">0 < \kappa < 1 </tex-math></inline-formula>, these upper bounds match with the achievable throughput scalings.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3011895</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4362-5970</orcidid><orcidid>https://orcid.org/0000-0002-5008-4527</orcidid><orcidid>https://orcid.org/0000-0003-0199-8776</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2020-12, Vol.66 (12), p.7684-7701 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_9146783 |
source | IEEE Electronic Library (IEL) |
subjects | Ad hoc networks capacity scaling law Communication Covert communication Data paths Gaussian noise Indexes low probability of detection Nickel Nodes Power consumption Scaling laws Throughput Upper bound Upper bounds wireless adhoc networks Wireless communication Wireless communications Wireless networks |
title | Throughput Scaling of Covert Communication Over Wireless Adhoc Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Throughput%20Scaling%20of%20Covert%20Communication%20Over%20Wireless%20Adhoc%20Networks&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Cho,%20Kang-Hee&rft.date=2020-12-01&rft.volume=66&rft.issue=12&rft.spage=7684&rft.epage=7701&rft.pages=7684-7701&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3011895&rft_dat=%3Cproquest_RIE%3E2465435657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465435657&rft_id=info:pmid/&rft_ieee_id=9146783&rfr_iscdi=true |