Throughput Scaling of Covert Communication Over Wireless Adhoc Networks

We consider the problem of covert communication over wireless adhoc networks in which (roughly) n legitimate nodes (LNs) and n^{\kappa } for \kappa > 0 non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-12, Vol.66 (12), p.7684-7701
Hauptverfasser: Cho, Kang-Hee, Lee, Si-Hyeon, Tan, Vincent Y. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7701
container_issue 12
container_start_page 7684
container_title IEEE transactions on information theory
container_volume 66
creator Cho, Kang-Hee
Lee, Si-Hyeon
Tan, Vincent Y. F.
description We consider the problem of covert communication over wireless adhoc networks in which (roughly) n legitimate nodes (LNs) and n^{\kappa } for \kappa > 0 non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with its intended destination node while ensuring that every WN is unable to detect the presence of the communication. In this scenario, we study the throughput scaling law. Due to the covert communication constraint, the transmit powers are necessarily limited. Under this condition, we introduce a preservation region around each WN. This region serves to prevent transmission from the LNs and to increase the transmit power of the LNs outside the preservation regions. For the achievability results, multi-hop (MH), hierarchical cooperation (HC), and hybrid HC-MH schemes are utilized with some appropriate modifications. In the proposed MH and hybrid schemes, because the preservation regions may impede communication along direct data paths, the data paths are suitably modified by taking a detour around each preservation region. To avoid the concentration of detours resulting extra relaying burdens, we distribute the detours evenly over a wide region. In the proposed HC scheme, we control the symbol power and the scheduling of distributed multiple-input multiple-output transmission. We also present upper bounds on the throughput scaling under the assumption that every active LN consumes the same average transmit power over the time period in which the WNs observe the channel outputs. For 0 < \kappa < 1 , these upper bounds match with the achievable throughput scalings.
doi_str_mv 10.1109/TIT.2020.3011895
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9146783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9146783</ieee_id><sourcerecordid>2465435657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-88d18dbbc720da0a54f9f156dc337391a14f237270f3bcf9f3a2af55aac7d5d83</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC562ZfDTJsRSthWIPrngMaTZpt7abmuwq_vdGWjw9Zua9GeaH0C3gEQBWD9W8GhFM8IhiAKn4GRoA56JUY87O0QBjkKViTF6iq5S2uWQcyADNqk0M_Xpz6Lvi1Zpd066L4Itp-HKxy7Lf921jTdeEtljmXvHeRLdzKRWTehNs8eK67xA_0jW68GaX3M1Jh-jt6bGaPpeL5Ww-nSxKSxR0pZQ1yHq1soLg2mDDmVce-Li2lAqqwADzhAoisKcrm2fUEOM5N8aKmteSDtH9ce8hhs_epU5vQx_bfFITll-lfMxFduGjy8aQUnReH2KzN_FHA9Z_uHTGpf9w6ROuHLk7Rhrn3L9dARsLSekvg6FmTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465435657</pqid></control><display><type>article</type><title>Throughput Scaling of Covert Communication Over Wireless Adhoc Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Cho, Kang-Hee ; Lee, Si-Hyeon ; Tan, Vincent Y. F.</creator><creatorcontrib>Cho, Kang-Hee ; Lee, Si-Hyeon ; Tan, Vincent Y. F.</creatorcontrib><description><![CDATA[We consider the problem of covert communication over wireless adhoc networks in which (roughly) <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> legitimate nodes (LNs) and <inline-formula> <tex-math notation="LaTeX">n^{\kappa } </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">\kappa > 0 </tex-math></inline-formula> non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with its intended destination node while ensuring that every WN is unable to detect the presence of the communication. In this scenario, we study the throughput scaling law. Due to the covert communication constraint, the transmit powers are necessarily limited. Under this condition, we introduce a preservation region around each WN. This region serves to prevent transmission from the LNs and to increase the transmit power of the LNs outside the preservation regions. For the achievability results, multi-hop (MH), hierarchical cooperation (HC), and hybrid HC-MH schemes are utilized with some appropriate modifications. In the proposed MH and hybrid schemes, because the preservation regions may impede communication along direct data paths, the data paths are suitably modified by taking a detour around each preservation region. To avoid the concentration of detours resulting extra relaying burdens, we distribute the detours evenly over a wide region. In the proposed HC scheme, we control the symbol power and the scheduling of distributed multiple-input multiple-output transmission. We also present upper bounds on the throughput scaling under the assumption that every active LN consumes the same average transmit power over the time period in which the WNs observe the channel outputs. For <inline-formula> <tex-math notation="LaTeX">0 < \kappa < 1 </tex-math></inline-formula>, these upper bounds match with the achievable throughput scalings.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.3011895</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ad hoc networks ; capacity scaling law ; Communication ; Covert communication ; Data paths ; Gaussian noise ; Indexes ; low probability of detection ; Nickel ; Nodes ; Power consumption ; Scaling laws ; Throughput ; Upper bound ; Upper bounds ; wireless adhoc networks ; Wireless communication ; Wireless communications ; Wireless networks</subject><ispartof>IEEE transactions on information theory, 2020-12, Vol.66 (12), p.7684-7701</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-88d18dbbc720da0a54f9f156dc337391a14f237270f3bcf9f3a2af55aac7d5d83</citedby><cites>FETCH-LOGICAL-c291t-88d18dbbc720da0a54f9f156dc337391a14f237270f3bcf9f3a2af55aac7d5d83</cites><orcidid>0000-0002-4362-5970 ; 0000-0002-5008-4527 ; 0000-0003-0199-8776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9146783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9146783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cho, Kang-Hee</creatorcontrib><creatorcontrib>Lee, Si-Hyeon</creatorcontrib><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><title>Throughput Scaling of Covert Communication Over Wireless Adhoc Networks</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[We consider the problem of covert communication over wireless adhoc networks in which (roughly) <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> legitimate nodes (LNs) and <inline-formula> <tex-math notation="LaTeX">n^{\kappa } </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">\kappa > 0 </tex-math></inline-formula> non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with its intended destination node while ensuring that every WN is unable to detect the presence of the communication. In this scenario, we study the throughput scaling law. Due to the covert communication constraint, the transmit powers are necessarily limited. Under this condition, we introduce a preservation region around each WN. This region serves to prevent transmission from the LNs and to increase the transmit power of the LNs outside the preservation regions. For the achievability results, multi-hop (MH), hierarchical cooperation (HC), and hybrid HC-MH schemes are utilized with some appropriate modifications. In the proposed MH and hybrid schemes, because the preservation regions may impede communication along direct data paths, the data paths are suitably modified by taking a detour around each preservation region. To avoid the concentration of detours resulting extra relaying burdens, we distribute the detours evenly over a wide region. In the proposed HC scheme, we control the symbol power and the scheduling of distributed multiple-input multiple-output transmission. We also present upper bounds on the throughput scaling under the assumption that every active LN consumes the same average transmit power over the time period in which the WNs observe the channel outputs. For <inline-formula> <tex-math notation="LaTeX">0 < \kappa < 1 </tex-math></inline-formula>, these upper bounds match with the achievable throughput scalings.]]></description><subject>Ad hoc networks</subject><subject>capacity scaling law</subject><subject>Communication</subject><subject>Covert communication</subject><subject>Data paths</subject><subject>Gaussian noise</subject><subject>Indexes</subject><subject>low probability of detection</subject><subject>Nickel</subject><subject>Nodes</subject><subject>Power consumption</subject><subject>Scaling laws</subject><subject>Throughput</subject><subject>Upper bound</subject><subject>Upper bounds</subject><subject>wireless adhoc networks</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC562ZfDTJsRSthWIPrngMaTZpt7abmuwq_vdGWjw9Zua9GeaH0C3gEQBWD9W8GhFM8IhiAKn4GRoA56JUY87O0QBjkKViTF6iq5S2uWQcyADNqk0M_Xpz6Lvi1Zpd066L4Itp-HKxy7Lf921jTdeEtljmXvHeRLdzKRWTehNs8eK67xA_0jW68GaX3M1Jh-jt6bGaPpeL5Ww-nSxKSxR0pZQ1yHq1soLg2mDDmVce-Li2lAqqwADzhAoisKcrm2fUEOM5N8aKmteSDtH9ce8hhs_epU5vQx_bfFITll-lfMxFduGjy8aQUnReH2KzN_FHA9Z_uHTGpf9w6ROuHLk7Rhrn3L9dARsLSekvg6FmTw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Cho, Kang-Hee</creator><creator>Lee, Si-Hyeon</creator><creator>Tan, Vincent Y. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4362-5970</orcidid><orcidid>https://orcid.org/0000-0002-5008-4527</orcidid><orcidid>https://orcid.org/0000-0003-0199-8776</orcidid></search><sort><creationdate>20201201</creationdate><title>Throughput Scaling of Covert Communication Over Wireless Adhoc Networks</title><author>Cho, Kang-Hee ; Lee, Si-Hyeon ; Tan, Vincent Y. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-88d18dbbc720da0a54f9f156dc337391a14f237270f3bcf9f3a2af55aac7d5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ad hoc networks</topic><topic>capacity scaling law</topic><topic>Communication</topic><topic>Covert communication</topic><topic>Data paths</topic><topic>Gaussian noise</topic><topic>Indexes</topic><topic>low probability of detection</topic><topic>Nickel</topic><topic>Nodes</topic><topic>Power consumption</topic><topic>Scaling laws</topic><topic>Throughput</topic><topic>Upper bound</topic><topic>Upper bounds</topic><topic>wireless adhoc networks</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Kang-Hee</creatorcontrib><creatorcontrib>Lee, Si-Hyeon</creatorcontrib><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Kang-Hee</au><au>Lee, Si-Hyeon</au><au>Tan, Vincent Y. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Throughput Scaling of Covert Communication Over Wireless Adhoc Networks</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>66</volume><issue>12</issue><spage>7684</spage><epage>7701</epage><pages>7684-7701</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[We consider the problem of covert communication over wireless adhoc networks in which (roughly) <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> legitimate nodes (LNs) and <inline-formula> <tex-math notation="LaTeX">n^{\kappa } </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">\kappa > 0 </tex-math></inline-formula> non-communicating warden nodes (WNs) are randomly distributed in a square of unit area. Each legitimate source wants to communicate with its intended destination node while ensuring that every WN is unable to detect the presence of the communication. In this scenario, we study the throughput scaling law. Due to the covert communication constraint, the transmit powers are necessarily limited. Under this condition, we introduce a preservation region around each WN. This region serves to prevent transmission from the LNs and to increase the transmit power of the LNs outside the preservation regions. For the achievability results, multi-hop (MH), hierarchical cooperation (HC), and hybrid HC-MH schemes are utilized with some appropriate modifications. In the proposed MH and hybrid schemes, because the preservation regions may impede communication along direct data paths, the data paths are suitably modified by taking a detour around each preservation region. To avoid the concentration of detours resulting extra relaying burdens, we distribute the detours evenly over a wide region. In the proposed HC scheme, we control the symbol power and the scheduling of distributed multiple-input multiple-output transmission. We also present upper bounds on the throughput scaling under the assumption that every active LN consumes the same average transmit power over the time period in which the WNs observe the channel outputs. For <inline-formula> <tex-math notation="LaTeX">0 < \kappa < 1 </tex-math></inline-formula>, these upper bounds match with the achievable throughput scalings.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.3011895</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4362-5970</orcidid><orcidid>https://orcid.org/0000-0002-5008-4527</orcidid><orcidid>https://orcid.org/0000-0003-0199-8776</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-12, Vol.66 (12), p.7684-7701
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_9146783
source IEEE Electronic Library (IEL)
subjects Ad hoc networks
capacity scaling law
Communication
Covert communication
Data paths
Gaussian noise
Indexes
low probability of detection
Nickel
Nodes
Power consumption
Scaling laws
Throughput
Upper bound
Upper bounds
wireless adhoc networks
Wireless communication
Wireless communications
Wireless networks
title Throughput Scaling of Covert Communication Over Wireless Adhoc Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Throughput%20Scaling%20of%20Covert%20Communication%20Over%20Wireless%20Adhoc%20Networks&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Cho,%20Kang-Hee&rft.date=2020-12-01&rft.volume=66&rft.issue=12&rft.spage=7684&rft.epage=7701&rft.pages=7684-7701&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.3011895&rft_dat=%3Cproquest_RIE%3E2465435657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465435657&rft_id=info:pmid/&rft_ieee_id=9146783&rfr_iscdi=true