Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input
Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the compl...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2020-09, Vol.10 (5), p.1424-1440 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1440 |
---|---|
container_issue | 5 |
container_start_page | 1424 |
container_title | IEEE journal of photovoltaics |
container_volume | 10 |
creator | Bosco, Nick Springer, Martin He, Xin |
description | Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software. |
doi_str_mv | 10.1109/JPHOTOV.2020.3005086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9144497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9144497</ieee_id><sourcerecordid>2436602899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b5f71cad48a967f7361e926662f1c71e34676fd4e2308326ab64c84cc814537f3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhisEEhPsF8AhEueOfNVtjmh8DMS0HcauVUgdllGakWZIcOd_02obvtiWnseW3iS5ZHTEGFXXT_PJbDFbjjjldCQozWgBR8mAswxSIak4PsyiYKfJsG3XtCugGYAcJL9L1xqPtW6jM2SqIwanazJe6aBNv_zo6HxDdFORqa-wds0b8ZbMVz76L19H3Wu-2tZI5tq867ceONxpifWB3LqAJpJ717iI6V2NH9hEMsW48hV5bDbbeJ6c2I7G4b6fJS_3d4vxJH2ePTyOb55TIxTE9DWzOTO6koVWkNtcAEPFAYBbZnKGQkIOtpLIBS0EB_0K0hTSmILJTORWnCVXu7ub4D-32MZy7beh6V6WXAoAygulOkruKBN82wa05Sa4Dx2-S0bLPvNyn3nZZ17uM--0i53mEPFfUUxKqXLxBzeMfyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436602899</pqid></control><display><type>article</type><title>Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input</title><source>IEEE Electronic Library (IEL)</source><creator>Bosco, Nick ; Springer, Martin ; He, Xin</creator><creatorcontrib>Bosco, Nick ; Springer, Martin ; He, Xin</creatorcontrib><description>Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2020.3005086</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Encapsulation ; Finite element analysis ; Finite element method ; Frequency measurement ; Load modeling ; Loading ; materials testing ; Mathematical analysis ; Mechanical analysis ; Modules ; Packaging ; photovoltaic (PV) cells ; Photovoltaic cells ; Photovoltaic systems ; solar energy ; Temperature ; Temperature dependence ; Temperature measurement ; Thermal expansion ; Time dependence ; Viscoelasticity</subject><ispartof>IEEE journal of photovoltaics, 2020-09, Vol.10 (5), p.1424-1440</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-b5f71cad48a967f7361e926662f1c71e34676fd4e2308326ab64c84cc814537f3</citedby><cites>FETCH-LOGICAL-c396t-b5f71cad48a967f7361e926662f1c71e34676fd4e2308326ab64c84cc814537f3</cites><orcidid>0000-0001-6803-108X ; 0000-0002-8873-2577 ; 0000-0002-3457-2547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9144497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9144497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bosco, Nick</creatorcontrib><creatorcontrib>Springer, Martin</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><title>Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software.</description><subject>Encapsulation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequency measurement</subject><subject>Load modeling</subject><subject>Loading</subject><subject>materials testing</subject><subject>Mathematical analysis</subject><subject>Mechanical analysis</subject><subject>Modules</subject><subject>Packaging</subject><subject>photovoltaic (PV) cells</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>solar energy</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>Thermal expansion</subject><subject>Time dependence</subject><subject>Viscoelasticity</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhisEEhPsF8AhEueOfNVtjmh8DMS0HcauVUgdllGakWZIcOd_02obvtiWnseW3iS5ZHTEGFXXT_PJbDFbjjjldCQozWgBR8mAswxSIak4PsyiYKfJsG3XtCugGYAcJL9L1xqPtW6jM2SqIwanazJe6aBNv_zo6HxDdFORqa-wds0b8ZbMVz76L19H3Wu-2tZI5tq867ceONxpifWB3LqAJpJ717iI6V2NH9hEMsW48hV5bDbbeJ6c2I7G4b6fJS_3d4vxJH2ePTyOb55TIxTE9DWzOTO6koVWkNtcAEPFAYBbZnKGQkIOtpLIBS0EB_0K0hTSmILJTORWnCVXu7ub4D-32MZy7beh6V6WXAoAygulOkruKBN82wa05Sa4Dx2-S0bLPvNyn3nZZ17uM--0i53mEPFfUUxKqXLxBzeMfyk</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bosco, Nick</creator><creator>Springer, Martin</creator><creator>He, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6803-108X</orcidid><orcidid>https://orcid.org/0000-0002-8873-2577</orcidid><orcidid>https://orcid.org/0000-0002-3457-2547</orcidid></search><sort><creationdate>20200901</creationdate><title>Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input</title><author>Bosco, Nick ; Springer, Martin ; He, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b5f71cad48a967f7361e926662f1c71e34676fd4e2308326ab64c84cc814537f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Encapsulation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequency measurement</topic><topic>Load modeling</topic><topic>Loading</topic><topic>materials testing</topic><topic>Mathematical analysis</topic><topic>Mechanical analysis</topic><topic>Modules</topic><topic>Packaging</topic><topic>photovoltaic (PV) cells</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>solar energy</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>Thermal expansion</topic><topic>Time dependence</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosco, Nick</creatorcontrib><creatorcontrib>Springer, Martin</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bosco, Nick</au><au>Springer, Martin</au><au>He, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>1424</spage><epage>1440</epage><pages>1424-1440</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2020.3005086</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6803-108X</orcidid><orcidid>https://orcid.org/0000-0002-8873-2577</orcidid><orcidid>https://orcid.org/0000-0002-3457-2547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2020-09, Vol.10 (5), p.1424-1440 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_ieee_primary_9144497 |
source | IEEE Electronic Library (IEL) |
subjects | Encapsulation Finite element analysis Finite element method Frequency measurement Load modeling Loading materials testing Mathematical analysis Mechanical analysis Modules Packaging photovoltaic (PV) cells Photovoltaic cells Photovoltaic systems solar energy Temperature Temperature dependence Temperature measurement Thermal expansion Time dependence Viscoelasticity |
title | Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20Material%20Characterization%20and%20Modeling%20of%20Photovoltaic%20Module%20Packaging%20Materials%20for%20Direct%20Finite-Element%20Method%20Input&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Bosco,%20Nick&rft.date=2020-09-01&rft.volume=10&rft.issue=5&rft.spage=1424&rft.epage=1440&rft.pages=1424-1440&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2020.3005086&rft_dat=%3Cproquest_RIE%3E2436602899%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436602899&rft_id=info:pmid/&rft_ieee_id=9144497&rfr_iscdi=true |