Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input

Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2020-09, Vol.10 (5), p.1424-1440
Hauptverfasser: Bosco, Nick, Springer, Martin, He, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1440
container_issue 5
container_start_page 1424
container_title IEEE journal of photovoltaics
container_volume 10
creator Bosco, Nick
Springer, Martin
He, Xin
description Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software.
doi_str_mv 10.1109/JPHOTOV.2020.3005086
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9144497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9144497</ieee_id><sourcerecordid>2436602899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-b5f71cad48a967f7361e926662f1c71e34676fd4e2308326ab64c84cc814537f3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhisEEhPsF8AhEueOfNVtjmh8DMS0HcauVUgdllGakWZIcOd_02obvtiWnseW3iS5ZHTEGFXXT_PJbDFbjjjldCQozWgBR8mAswxSIak4PsyiYKfJsG3XtCugGYAcJL9L1xqPtW6jM2SqIwanazJe6aBNv_zo6HxDdFORqa-wds0b8ZbMVz76L19H3Wu-2tZI5tq867ceONxpifWB3LqAJpJ717iI6V2NH9hEMsW48hV5bDbbeJ6c2I7G4b6fJS_3d4vxJH2ePTyOb55TIxTE9DWzOTO6koVWkNtcAEPFAYBbZnKGQkIOtpLIBS0EB_0K0hTSmILJTORWnCVXu7ub4D-32MZy7beh6V6WXAoAygulOkruKBN82wa05Sa4Dx2-S0bLPvNyn3nZZ17uM--0i53mEPFfUUxKqXLxBzeMfyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436602899</pqid></control><display><type>article</type><title>Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input</title><source>IEEE Electronic Library (IEL)</source><creator>Bosco, Nick ; Springer, Martin ; He, Xin</creator><creatorcontrib>Bosco, Nick ; Springer, Martin ; He, Xin</creatorcontrib><description>Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2020.3005086</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Encapsulation ; Finite element analysis ; Finite element method ; Frequency measurement ; Load modeling ; Loading ; materials testing ; Mathematical analysis ; Mechanical analysis ; Modules ; Packaging ; photovoltaic (PV) cells ; Photovoltaic cells ; Photovoltaic systems ; solar energy ; Temperature ; Temperature dependence ; Temperature measurement ; Thermal expansion ; Time dependence ; Viscoelasticity</subject><ispartof>IEEE journal of photovoltaics, 2020-09, Vol.10 (5), p.1424-1440</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-b5f71cad48a967f7361e926662f1c71e34676fd4e2308326ab64c84cc814537f3</citedby><cites>FETCH-LOGICAL-c396t-b5f71cad48a967f7361e926662f1c71e34676fd4e2308326ab64c84cc814537f3</cites><orcidid>0000-0001-6803-108X ; 0000-0002-8873-2577 ; 0000-0002-3457-2547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9144497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9144497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bosco, Nick</creatorcontrib><creatorcontrib>Springer, Martin</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><title>Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software.</description><subject>Encapsulation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequency measurement</subject><subject>Load modeling</subject><subject>Loading</subject><subject>materials testing</subject><subject>Mathematical analysis</subject><subject>Mechanical analysis</subject><subject>Modules</subject><subject>Packaging</subject><subject>photovoltaic (PV) cells</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>solar energy</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>Thermal expansion</subject><subject>Time dependence</subject><subject>Viscoelasticity</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhisEEhPsF8AhEueOfNVtjmh8DMS0HcauVUgdllGakWZIcOd_02obvtiWnseW3iS5ZHTEGFXXT_PJbDFbjjjldCQozWgBR8mAswxSIak4PsyiYKfJsG3XtCugGYAcJL9L1xqPtW6jM2SqIwanazJe6aBNv_zo6HxDdFORqa-wds0b8ZbMVz76L19H3Wu-2tZI5tq867ceONxpifWB3LqAJpJ717iI6V2NH9hEMsW48hV5bDbbeJ6c2I7G4b6fJS_3d4vxJH2ePTyOb55TIxTE9DWzOTO6koVWkNtcAEPFAYBbZnKGQkIOtpLIBS0EB_0K0hTSmILJTORWnCVXu7ub4D-32MZy7beh6V6WXAoAygulOkruKBN82wa05Sa4Dx2-S0bLPvNyn3nZZ17uM--0i53mEPFfUUxKqXLxBzeMfyk</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bosco, Nick</creator><creator>Springer, Martin</creator><creator>He, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6803-108X</orcidid><orcidid>https://orcid.org/0000-0002-8873-2577</orcidid><orcidid>https://orcid.org/0000-0002-3457-2547</orcidid></search><sort><creationdate>20200901</creationdate><title>Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input</title><author>Bosco, Nick ; Springer, Martin ; He, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-b5f71cad48a967f7361e926662f1c71e34676fd4e2308326ab64c84cc814537f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Encapsulation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequency measurement</topic><topic>Load modeling</topic><topic>Loading</topic><topic>materials testing</topic><topic>Mathematical analysis</topic><topic>Mechanical analysis</topic><topic>Modules</topic><topic>Packaging</topic><topic>photovoltaic (PV) cells</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>solar energy</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>Thermal expansion</topic><topic>Time dependence</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosco, Nick</creatorcontrib><creatorcontrib>Springer, Martin</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bosco, Nick</au><au>Springer, Martin</au><au>He, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>1424</spage><epage>1440</epage><pages>1424-1440</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Numerical tools, such as the finite-element method, are increasingly used to design and evaluate the photovoltaic (PV) modules, providing for the reduction of development time and improved performance and reliability. However, high-fidelity material models are necessary to accurately model the complex structural behavior of the involved packaging materials. A common simplification used in recent years is to model the polymer materials (i.e., encapsulant and backsheet) as linear elastic, which will lead to inaccurate results. Therefore, in this work, we present a thorough characterization of the time- and temperature-dependent mechanical response of predominant PV module encapsulant and backsheet materials. Based on this material characterization, we developed and experimentally validated generalized Maxwell models to describe each material's viscoelastic response. In addition, we included measurements of the coefficient of thermal expansion and presented all material models in such a fashion for direct input into commercial finite-element method modeling software.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2020.3005086</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6803-108X</orcidid><orcidid>https://orcid.org/0000-0002-8873-2577</orcidid><orcidid>https://orcid.org/0000-0002-3457-2547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2020-09, Vol.10 (5), p.1424-1440
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_9144497
source IEEE Electronic Library (IEL)
subjects Encapsulation
Finite element analysis
Finite element method
Frequency measurement
Load modeling
Loading
materials testing
Mathematical analysis
Mechanical analysis
Modules
Packaging
photovoltaic (PV) cells
Photovoltaic cells
Photovoltaic systems
solar energy
Temperature
Temperature dependence
Temperature measurement
Thermal expansion
Time dependence
Viscoelasticity
title Viscoelastic Material Characterization and Modeling of Photovoltaic Module Packaging Materials for Direct Finite-Element Method Input
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20Material%20Characterization%20and%20Modeling%20of%20Photovoltaic%20Module%20Packaging%20Materials%20for%20Direct%20Finite-Element%20Method%20Input&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Bosco,%20Nick&rft.date=2020-09-01&rft.volume=10&rft.issue=5&rft.spage=1424&rft.epage=1440&rft.pages=1424-1440&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2020.3005086&rft_dat=%3Cproquest_RIE%3E2436602899%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436602899&rft_id=info:pmid/&rft_ieee_id=9144497&rfr_iscdi=true