The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz, Far-Infrared, and Mid-Infrared Ranges

Unlike synchrotrons with multiple beamlines, free-electron lasers (FELs) are single-beam facilities, which nevertheless have a number of endstations. The latter requires development of complex radiation transport line, which should be efficient enough to avoid scaling down the FEL capabilities. Keep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on terahertz science and technology 2020-11, Vol.10 (6), p.634-646
Hauptverfasser: Kubarev, Vitaly V., Sozinov, Gennady I., Scheglov, Mikhail A., Vodopyanov, Alexander V., Sidorov, Alexander V., Melnikov, Anatoly R., Veber, Sergey L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 646
container_issue 6
container_start_page 634
container_title IEEE transactions on terahertz science and technology
container_volume 10
creator Kubarev, Vitaly V.
Sozinov, Gennady I.
Scheglov, Mikhail A.
Vodopyanov, Alexander V.
Sidorov, Alexander V.
Melnikov, Anatoly R.
Veber, Sergey L.
description Unlike synchrotrons with multiple beamlines, free-electron lasers (FELs) are single-beam facilities, which nevertheless have a number of endstations. The latter requires development of complex radiation transport line, which should be efficient enough to avoid scaling down the FEL capabilities. Keeping the beam shape and radiation power level along the beamline is a challenge because the total length of the FEL radiation transport line can exceed a hundred meters. The FELs around the world differ from each other in both radiation parameters and endstations' layout requiring individual design of their radiation transport lines. In this work, we describe the 120-m beamline for transporting the radiation of the Novosibirsk FEL facility, consisting of three FELs of the terahertz (THz), far-infrared, and mid-infrared ranges. The radiation of these three FELs is directed to the same beam transport channel, which is able to deliver the radiation to any of 14 endstations already commissioned. To compare the expected beam parameters with the actual ones, the radiation intensity distribution was measured in a number of places of the beamline that are THz radiation outputs for some endstations. Possible causes of the parameters' mismatching observed for distant endstations are discussed. The problem of radiation absorption by water vapor is considered in detail.
doi_str_mv 10.1109/TTHZ.2020.3010046
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9143485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9143485</ieee_id><sourcerecordid>2457976011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8e7725dee2c41180fef968a70f1e79a5c9bd4b4c52e329be8e28b747122f70073</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYsoOOZ-gPgS8HWdSZo2zaOOzQ2mA6kgvoS0vdkyt3QmnTCf_OlmbOy-3MPlO_fAiaJbggeEYPFQFJPPAcUUDxJMMGbZRdShJM3ihLHs8qzpx3XU836Fw6RZknPWif6KJaA3VRvVmsaiJ1CbtbGAGo1em5_Gm9I4_4XGDiAeraFqXaBmyoNDY1WZtWn3aL4FF-x2gYxFRdBLcO1vPwAunlrtlIO6j5St0Yupz5eQahfgb6IrrdYeeqfdjd7Ho2I4iWfz5-nwcRZXVCRtnAPnNK0BaMUIybEGLbJccawJcKHSSpQ1K1mVUkioKCEHmpeccUKp5hjzpBvdH_9uXfO9A9_KVbNzNkRKylIueIYJCRQ5UpVrvHeg5daZjXJ7SbA8dC0PXctD1_LUdfDcHT0GAM68ICxheZr8AyH4epU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457976011</pqid></control><display><type>article</type><title>The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz, Far-Infrared, and Mid-Infrared Ranges</title><source>IEEE Electronic Library (IEL)</source><creator>Kubarev, Vitaly V. ; Sozinov, Gennady I. ; Scheglov, Mikhail A. ; Vodopyanov, Alexander V. ; Sidorov, Alexander V. ; Melnikov, Anatoly R. ; Veber, Sergey L.</creator><creatorcontrib>Kubarev, Vitaly V. ; Sozinov, Gennady I. ; Scheglov, Mikhail A. ; Vodopyanov, Alexander V. ; Sidorov, Alexander V. ; Melnikov, Anatoly R. ; Veber, Sergey L.</creatorcontrib><description>Unlike synchrotrons with multiple beamlines, free-electron lasers (FELs) are single-beam facilities, which nevertheless have a number of endstations. The latter requires development of complex radiation transport line, which should be efficient enough to avoid scaling down the FEL capabilities. Keeping the beam shape and radiation power level along the beamline is a challenge because the total length of the FEL radiation transport line can exceed a hundred meters. The FELs around the world differ from each other in both radiation parameters and endstations' layout requiring individual design of their radiation transport lines. In this work, we describe the 120-m beamline for transporting the radiation of the Novosibirsk FEL facility, consisting of three FELs of the terahertz (THz), far-infrared, and mid-infrared ranges. The radiation of these three FELs is directed to the same beam transport channel, which is able to deliver the radiation to any of 14 endstations already commissioned. To compare the expected beam parameters with the actual ones, the radiation intensity distribution was measured in a number of places of the beamline that are THz radiation outputs for some endstations. Possible causes of the parameters' mismatching observed for distant endstations are discussed. The problem of radiation absorption by water vapor is considered in detail.</description><identifier>ISSN: 2156-342X</identifier><identifier>EISSN: 2156-3446</identifier><identifier>DOI: 10.1109/TTHZ.2020.3010046</identifier><identifier>CODEN: ITTSBX</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorption ; Dehumidification ; Far infrared radiation ; Free electron lasers ; free-electron laser (FEL) ; Gaussian beams ; Laser beams ; Measurement by laser beam ; Measuring instruments ; Mirrors ; Optical resonators ; Parameters ; Radiation absorption ; radiation beamline ; Radiation transport ; Synchrotrons ; terahertz (THz) beam imaging ; Terahertz radiation ; Water vapor ; water vapor absorption</subject><ispartof>IEEE transactions on terahertz science and technology, 2020-11, Vol.10 (6), p.634-646</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8e7725dee2c41180fef968a70f1e79a5c9bd4b4c52e329be8e28b747122f70073</citedby><cites>FETCH-LOGICAL-c293t-8e7725dee2c41180fef968a70f1e79a5c9bd4b4c52e329be8e28b747122f70073</cites><orcidid>0000-0002-0458-5742 ; 0000-0002-5445-3713 ; 0000-0002-8316-8727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9143485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9143485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kubarev, Vitaly V.</creatorcontrib><creatorcontrib>Sozinov, Gennady I.</creatorcontrib><creatorcontrib>Scheglov, Mikhail A.</creatorcontrib><creatorcontrib>Vodopyanov, Alexander V.</creatorcontrib><creatorcontrib>Sidorov, Alexander V.</creatorcontrib><creatorcontrib>Melnikov, Anatoly R.</creatorcontrib><creatorcontrib>Veber, Sergey L.</creatorcontrib><title>The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz, Far-Infrared, and Mid-Infrared Ranges</title><title>IEEE transactions on terahertz science and technology</title><addtitle>TTHZ</addtitle><description>Unlike synchrotrons with multiple beamlines, free-electron lasers (FELs) are single-beam facilities, which nevertheless have a number of endstations. The latter requires development of complex radiation transport line, which should be efficient enough to avoid scaling down the FEL capabilities. Keeping the beam shape and radiation power level along the beamline is a challenge because the total length of the FEL radiation transport line can exceed a hundred meters. The FELs around the world differ from each other in both radiation parameters and endstations' layout requiring individual design of their radiation transport lines. In this work, we describe the 120-m beamline for transporting the radiation of the Novosibirsk FEL facility, consisting of three FELs of the terahertz (THz), far-infrared, and mid-infrared ranges. The radiation of these three FELs is directed to the same beam transport channel, which is able to deliver the radiation to any of 14 endstations already commissioned. To compare the expected beam parameters with the actual ones, the radiation intensity distribution was measured in a number of places of the beamline that are THz radiation outputs for some endstations. Possible causes of the parameters' mismatching observed for distant endstations are discussed. The problem of radiation absorption by water vapor is considered in detail.</description><subject>Absorption</subject><subject>Dehumidification</subject><subject>Far infrared radiation</subject><subject>Free electron lasers</subject><subject>free-electron laser (FEL)</subject><subject>Gaussian beams</subject><subject>Laser beams</subject><subject>Measurement by laser beam</subject><subject>Measuring instruments</subject><subject>Mirrors</subject><subject>Optical resonators</subject><subject>Parameters</subject><subject>Radiation absorption</subject><subject>radiation beamline</subject><subject>Radiation transport</subject><subject>Synchrotrons</subject><subject>terahertz (THz) beam imaging</subject><subject>Terahertz radiation</subject><subject>Water vapor</subject><subject>water vapor absorption</subject><issn>2156-342X</issn><issn>2156-3446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYsoOOZ-gPgS8HWdSZo2zaOOzQ2mA6kgvoS0vdkyt3QmnTCf_OlmbOy-3MPlO_fAiaJbggeEYPFQFJPPAcUUDxJMMGbZRdShJM3ihLHs8qzpx3XU836Fw6RZknPWif6KJaA3VRvVmsaiJ1CbtbGAGo1em5_Gm9I4_4XGDiAeraFqXaBmyoNDY1WZtWn3aL4FF-x2gYxFRdBLcO1vPwAunlrtlIO6j5St0Yupz5eQahfgb6IrrdYeeqfdjd7Ho2I4iWfz5-nwcRZXVCRtnAPnNK0BaMUIybEGLbJccawJcKHSSpQ1K1mVUkioKCEHmpeccUKp5hjzpBvdH_9uXfO9A9_KVbNzNkRKylIueIYJCRQ5UpVrvHeg5daZjXJ7SbA8dC0PXctD1_LUdfDcHT0GAM68ICxheZr8AyH4epU</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kubarev, Vitaly V.</creator><creator>Sozinov, Gennady I.</creator><creator>Scheglov, Mikhail A.</creator><creator>Vodopyanov, Alexander V.</creator><creator>Sidorov, Alexander V.</creator><creator>Melnikov, Anatoly R.</creator><creator>Veber, Sergey L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0458-5742</orcidid><orcidid>https://orcid.org/0000-0002-5445-3713</orcidid><orcidid>https://orcid.org/0000-0002-8316-8727</orcidid></search><sort><creationdate>20201101</creationdate><title>The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz, Far-Infrared, and Mid-Infrared Ranges</title><author>Kubarev, Vitaly V. ; Sozinov, Gennady I. ; Scheglov, Mikhail A. ; Vodopyanov, Alexander V. ; Sidorov, Alexander V. ; Melnikov, Anatoly R. ; Veber, Sergey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8e7725dee2c41180fef968a70f1e79a5c9bd4b4c52e329be8e28b747122f70073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Dehumidification</topic><topic>Far infrared radiation</topic><topic>Free electron lasers</topic><topic>free-electron laser (FEL)</topic><topic>Gaussian beams</topic><topic>Laser beams</topic><topic>Measurement by laser beam</topic><topic>Measuring instruments</topic><topic>Mirrors</topic><topic>Optical resonators</topic><topic>Parameters</topic><topic>Radiation absorption</topic><topic>radiation beamline</topic><topic>Radiation transport</topic><topic>Synchrotrons</topic><topic>terahertz (THz) beam imaging</topic><topic>Terahertz radiation</topic><topic>Water vapor</topic><topic>water vapor absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubarev, Vitaly V.</creatorcontrib><creatorcontrib>Sozinov, Gennady I.</creatorcontrib><creatorcontrib>Scheglov, Mikhail A.</creatorcontrib><creatorcontrib>Vodopyanov, Alexander V.</creatorcontrib><creatorcontrib>Sidorov, Alexander V.</creatorcontrib><creatorcontrib>Melnikov, Anatoly R.</creatorcontrib><creatorcontrib>Veber, Sergey L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on terahertz science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kubarev, Vitaly V.</au><au>Sozinov, Gennady I.</au><au>Scheglov, Mikhail A.</au><au>Vodopyanov, Alexander V.</au><au>Sidorov, Alexander V.</au><au>Melnikov, Anatoly R.</au><au>Veber, Sergey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz, Far-Infrared, and Mid-Infrared Ranges</atitle><jtitle>IEEE transactions on terahertz science and technology</jtitle><stitle>TTHZ</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>10</volume><issue>6</issue><spage>634</spage><epage>646</epage><pages>634-646</pages><issn>2156-342X</issn><eissn>2156-3446</eissn><coden>ITTSBX</coden><abstract>Unlike synchrotrons with multiple beamlines, free-electron lasers (FELs) are single-beam facilities, which nevertheless have a number of endstations. The latter requires development of complex radiation transport line, which should be efficient enough to avoid scaling down the FEL capabilities. Keeping the beam shape and radiation power level along the beamline is a challenge because the total length of the FEL radiation transport line can exceed a hundred meters. The FELs around the world differ from each other in both radiation parameters and endstations' layout requiring individual design of their radiation transport lines. In this work, we describe the 120-m beamline for transporting the radiation of the Novosibirsk FEL facility, consisting of three FELs of the terahertz (THz), far-infrared, and mid-infrared ranges. The radiation of these three FELs is directed to the same beam transport channel, which is able to deliver the radiation to any of 14 endstations already commissioned. To compare the expected beam parameters with the actual ones, the radiation intensity distribution was measured in a number of places of the beamline that are THz radiation outputs for some endstations. Possible causes of the parameters' mismatching observed for distant endstations are discussed. The problem of radiation absorption by water vapor is considered in detail.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTHZ.2020.3010046</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0458-5742</orcidid><orcidid>https://orcid.org/0000-0002-5445-3713</orcidid><orcidid>https://orcid.org/0000-0002-8316-8727</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-342X
ispartof IEEE transactions on terahertz science and technology, 2020-11, Vol.10 (6), p.634-646
issn 2156-342X
2156-3446
language eng
recordid cdi_ieee_primary_9143485
source IEEE Electronic Library (IEL)
subjects Absorption
Dehumidification
Far infrared radiation
Free electron lasers
free-electron laser (FEL)
Gaussian beams
Laser beams
Measurement by laser beam
Measuring instruments
Mirrors
Optical resonators
Parameters
Radiation absorption
radiation beamline
Radiation transport
Synchrotrons
terahertz (THz) beam imaging
Terahertz radiation
Water vapor
water vapor absorption
title The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz, Far-Infrared, and Mid-Infrared Ranges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Radiation%20Beamline%20of%20Novosibirsk%20Free-Electron%20Laser%20Facility%20Operating%20in%20Terahertz,%20Far-Infrared,%20and%20Mid-Infrared%20Ranges&rft.jtitle=IEEE%20transactions%20on%20terahertz%20science%20and%20technology&rft.au=Kubarev,%20Vitaly%20V.&rft.date=2020-11-01&rft.volume=10&rft.issue=6&rft.spage=634&rft.epage=646&rft.pages=634-646&rft.issn=2156-342X&rft.eissn=2156-3446&rft.coden=ITTSBX&rft_id=info:doi/10.1109/TTHZ.2020.3010046&rft_dat=%3Cproquest_RIE%3E2457976011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457976011&rft_id=info:pmid/&rft_ieee_id=9143485&rfr_iscdi=true