Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility

It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Guo, Junyao, Zhang, Sihai, Zhu, Jinkang, Ni, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Guo, Junyao
Zhang, Sihai
Zhu, Jinkang
Ni, Rui
description It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the difference between the user's actual distribution and the hypothesis in the derivation through the analysis on the upper bound of predictability. Then two statistics of the target user's mobility traces are proposed to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and designing prediction algorithms. Our work makes the predictability upper bound become a more effective measure and extends the understanding of predictability research in human mobility prediction.
doi_str_mv 10.1109/ACCESS.2020.3009868
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9142211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9142211</ieee_id><doaj_id>oai_doaj_org_article_35c241cb255e414fba5bd9cac716b28b</doaj_id><sourcerecordid>2454642204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-48dbde385a0f3d06ffee4e551cab7fb3f506e80fb4ef4df69268f3fe06443a8f3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX9BLwHPrflu9liKHwWLgno1TLITTWk3NbuL9t-7dVWcy8w83nsz8IpixOiEMVpezubzq8fHCaecTgSlpdHmoDjhTJdjoYQ-_DcfF-dNs6J9mR5S05PiZYnQdDnWr6R9Q3IDW-Kw_UCsv_clfMZNtyEPGavoW3BxHdsdgbr6hWKqycz7LoPfkRTIbbeBmizTwDwrjgKsGzz_6afF8_XV0_x2fHd_s5jP7sZeUtOOpalchcIooEFUVIeAKFEp5sFNgxNBUY2GBicxyCrokmsTRECqpRTQj6fFYvCtEqzsNscN5J1NEO03kPKrhdxGv0YrlOeSeceVQslkcKBcVXrwU6YdN673uhi8tjm9d9i0dpW6XPfvWy6V1JJzKnuWGFg-p6bJGP6uMmr3udghF7vPxf7k0qtGgyoi4p-iZL0nY-ILAF2KRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454642204</pqid></control><display><type>article</type><title>Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guo, Junyao ; Zhang, Sihai ; Zhu, Jinkang ; Ni, Rui</creator><creatorcontrib>Guo, Junyao ; Zhang, Sihai ; Zhu, Jinkang ; Ni, Rui</creatorcontrib><description>It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the difference between the user's actual distribution and the hypothesis in the derivation through the analysis on the upper bound of predictability. Then two statistics of the target user's mobility traces are proposed to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and designing prediction algorithms. Our work makes the predictability upper bound become a more effective measure and extends the understanding of predictability research in human mobility prediction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3009868</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Call Detail Records ; Data models ; Datasets ; Entropy ; Human Mobility Predictability ; Markov processes ; Mobility ; Prediction algorithms ; Prediction models ; Predictive models ; Quality assessment ; Real Entropy ; Trajectory ; Upper bound ; Upper bounds</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-48dbde385a0f3d06ffee4e551cab7fb3f506e80fb4ef4df69268f3fe06443a8f3</citedby><cites>FETCH-LOGICAL-c408t-48dbde385a0f3d06ffee4e551cab7fb3f506e80fb4ef4df69268f3fe06443a8f3</cites><orcidid>0000-0001-5758-2169 ; 0000-0002-4382-7580 ; 0000-0001-9177-0315 ; 0000-0002-0967-1762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9142211$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Guo, Junyao</creatorcontrib><creatorcontrib>Zhang, Sihai</creatorcontrib><creatorcontrib>Zhu, Jinkang</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><title>Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility</title><title>IEEE access</title><addtitle>Access</addtitle><description>It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the difference between the user's actual distribution and the hypothesis in the derivation through the analysis on the upper bound of predictability. Then two statistics of the target user's mobility traces are proposed to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and designing prediction algorithms. Our work makes the predictability upper bound become a more effective measure and extends the understanding of predictability research in human mobility prediction.</description><subject>Algorithms</subject><subject>Call Detail Records</subject><subject>Data models</subject><subject>Datasets</subject><subject>Entropy</subject><subject>Human Mobility Predictability</subject><subject>Markov processes</subject><subject>Mobility</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Quality assessment</subject><subject>Real Entropy</subject><subject>Trajectory</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX9BLwHPrflu9liKHwWLgno1TLITTWk3NbuL9t-7dVWcy8w83nsz8IpixOiEMVpezubzq8fHCaecTgSlpdHmoDjhTJdjoYQ-_DcfF-dNs6J9mR5S05PiZYnQdDnWr6R9Q3IDW-Kw_UCsv_clfMZNtyEPGavoW3BxHdsdgbr6hWKqycz7LoPfkRTIbbeBmizTwDwrjgKsGzz_6afF8_XV0_x2fHd_s5jP7sZeUtOOpalchcIooEFUVIeAKFEp5sFNgxNBUY2GBicxyCrokmsTRECqpRTQj6fFYvCtEqzsNscN5J1NEO03kPKrhdxGv0YrlOeSeceVQslkcKBcVXrwU6YdN673uhi8tjm9d9i0dpW6XPfvWy6V1JJzKnuWGFg-p6bJGP6uMmr3udghF7vPxf7k0qtGgyoi4p-iZL0nY-ILAF2KRA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Guo, Junyao</creator><creator>Zhang, Sihai</creator><creator>Zhu, Jinkang</creator><creator>Ni, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5758-2169</orcidid><orcidid>https://orcid.org/0000-0002-4382-7580</orcidid><orcidid>https://orcid.org/0000-0001-9177-0315</orcidid><orcidid>https://orcid.org/0000-0002-0967-1762</orcidid></search><sort><creationdate>20200101</creationdate><title>Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility</title><author>Guo, Junyao ; Zhang, Sihai ; Zhu, Jinkang ; Ni, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-48dbde385a0f3d06ffee4e551cab7fb3f506e80fb4ef4df69268f3fe06443a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Call Detail Records</topic><topic>Data models</topic><topic>Datasets</topic><topic>Entropy</topic><topic>Human Mobility Predictability</topic><topic>Markov processes</topic><topic>Mobility</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Quality assessment</topic><topic>Real Entropy</topic><topic>Trajectory</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Junyao</creatorcontrib><creatorcontrib>Zhang, Sihai</creatorcontrib><creatorcontrib>Zhu, Jinkang</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Junyao</au><au>Zhang, Sihai</au><au>Zhu, Jinkang</au><au>Ni, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the difference between the user's actual distribution and the hypothesis in the derivation through the analysis on the upper bound of predictability. Then two statistics of the target user's mobility traces are proposed to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and designing prediction algorithms. Our work makes the predictability upper bound become a more effective measure and extends the understanding of predictability research in human mobility prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3009868</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5758-2169</orcidid><orcidid>https://orcid.org/0000-0002-4382-7580</orcidid><orcidid>https://orcid.org/0000-0001-9177-0315</orcidid><orcidid>https://orcid.org/0000-0002-0967-1762</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9142211
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Call Detail Records
Data models
Datasets
Entropy
Human Mobility Predictability
Markov processes
Mobility
Prediction algorithms
Prediction models
Predictive models
Quality assessment
Real Entropy
Trajectory
Upper bound
Upper bounds
title Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Gap%20between%20the%20Maximum%20Predictability%20and%20Prediction%20Accuracy%20of%20Human%20Mobility&rft.jtitle=IEEE%20access&rft.au=Guo,%20Junyao&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3009868&rft_dat=%3Cproquest_ieee_%3E2454642204%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454642204&rft_id=info:pmid/&rft_ieee_id=9142211&rft_doaj_id=oai_doaj_org_article_35c241cb255e414fba5bd9cac716b28b&rfr_iscdi=true