Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility
It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Guo, Junyao Zhang, Sihai Zhu, Jinkang Ni, Rui |
description | It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the difference between the user's actual distribution and the hypothesis in the derivation through the analysis on the upper bound of predictability. Then two statistics of the target user's mobility traces are proposed to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and designing prediction algorithms. Our work makes the predictability upper bound become a more effective measure and extends the understanding of predictability research in human mobility prediction. |
doi_str_mv | 10.1109/ACCESS.2020.3009868 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9142211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9142211</ieee_id><doaj_id>oai_doaj_org_article_35c241cb255e414fba5bd9cac716b28b</doaj_id><sourcerecordid>2454642204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-48dbde385a0f3d06ffee4e551cab7fb3f506e80fb4ef4df69268f3fe06443a8f3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX9BLwHPrflu9liKHwWLgno1TLITTWk3NbuL9t-7dVWcy8w83nsz8IpixOiEMVpezubzq8fHCaecTgSlpdHmoDjhTJdjoYQ-_DcfF-dNs6J9mR5S05PiZYnQdDnWr6R9Q3IDW-Kw_UCsv_clfMZNtyEPGavoW3BxHdsdgbr6hWKqycz7LoPfkRTIbbeBmizTwDwrjgKsGzz_6afF8_XV0_x2fHd_s5jP7sZeUtOOpalchcIooEFUVIeAKFEp5sFNgxNBUY2GBicxyCrokmsTRECqpRTQj6fFYvCtEqzsNscN5J1NEO03kPKrhdxGv0YrlOeSeceVQslkcKBcVXrwU6YdN673uhi8tjm9d9i0dpW6XPfvWy6V1JJzKnuWGFg-p6bJGP6uMmr3udghF7vPxf7k0qtGgyoi4p-iZL0nY-ILAF2KRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454642204</pqid></control><display><type>article</type><title>Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guo, Junyao ; Zhang, Sihai ; Zhu, Jinkang ; Ni, Rui</creator><creatorcontrib>Guo, Junyao ; Zhang, Sihai ; Zhu, Jinkang ; Ni, Rui</creatorcontrib><description>It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the difference between the user's actual distribution and the hypothesis in the derivation through the analysis on the upper bound of predictability. Then two statistics of the target user's mobility traces are proposed to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and designing prediction algorithms. Our work makes the predictability upper bound become a more effective measure and extends the understanding of predictability research in human mobility prediction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3009868</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Call Detail Records ; Data models ; Datasets ; Entropy ; Human Mobility Predictability ; Markov processes ; Mobility ; Prediction algorithms ; Prediction models ; Predictive models ; Quality assessment ; Real Entropy ; Trajectory ; Upper bound ; Upper bounds</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-48dbde385a0f3d06ffee4e551cab7fb3f506e80fb4ef4df69268f3fe06443a8f3</citedby><cites>FETCH-LOGICAL-c408t-48dbde385a0f3d06ffee4e551cab7fb3f506e80fb4ef4df69268f3fe06443a8f3</cites><orcidid>0000-0001-5758-2169 ; 0000-0002-4382-7580 ; 0000-0001-9177-0315 ; 0000-0002-0967-1762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9142211$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Guo, Junyao</creatorcontrib><creatorcontrib>Zhang, Sihai</creatorcontrib><creatorcontrib>Zhu, Jinkang</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><title>Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility</title><title>IEEE access</title><addtitle>Access</addtitle><description>It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the difference between the user's actual distribution and the hypothesis in the derivation through the analysis on the upper bound of predictability. Then two statistics of the target user's mobility traces are proposed to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and designing prediction algorithms. Our work makes the predictability upper bound become a more effective measure and extends the understanding of predictability research in human mobility prediction.</description><subject>Algorithms</subject><subject>Call Detail Records</subject><subject>Data models</subject><subject>Datasets</subject><subject>Entropy</subject><subject>Human Mobility Predictability</subject><subject>Markov processes</subject><subject>Mobility</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Quality assessment</subject><subject>Real Entropy</subject><subject>Trajectory</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX9BLwHPrflu9liKHwWLgno1TLITTWk3NbuL9t-7dVWcy8w83nsz8IpixOiEMVpezubzq8fHCaecTgSlpdHmoDjhTJdjoYQ-_DcfF-dNs6J9mR5S05PiZYnQdDnWr6R9Q3IDW-Kw_UCsv_clfMZNtyEPGavoW3BxHdsdgbr6hWKqycz7LoPfkRTIbbeBmizTwDwrjgKsGzz_6afF8_XV0_x2fHd_s5jP7sZeUtOOpalchcIooEFUVIeAKFEp5sFNgxNBUY2GBicxyCrokmsTRECqpRTQj6fFYvCtEqzsNscN5J1NEO03kPKrhdxGv0YrlOeSeceVQslkcKBcVXrwU6YdN673uhi8tjm9d9i0dpW6XPfvWy6V1JJzKnuWGFg-p6bJGP6uMmr3udghF7vPxf7k0qtGgyoi4p-iZL0nY-ILAF2KRA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Guo, Junyao</creator><creator>Zhang, Sihai</creator><creator>Zhu, Jinkang</creator><creator>Ni, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5758-2169</orcidid><orcidid>https://orcid.org/0000-0002-4382-7580</orcidid><orcidid>https://orcid.org/0000-0001-9177-0315</orcidid><orcidid>https://orcid.org/0000-0002-0967-1762</orcidid></search><sort><creationdate>20200101</creationdate><title>Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility</title><author>Guo, Junyao ; Zhang, Sihai ; Zhu, Jinkang ; Ni, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-48dbde385a0f3d06ffee4e551cab7fb3f506e80fb4ef4df69268f3fe06443a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Call Detail Records</topic><topic>Data models</topic><topic>Datasets</topic><topic>Entropy</topic><topic>Human Mobility Predictability</topic><topic>Markov processes</topic><topic>Mobility</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Quality assessment</topic><topic>Real Entropy</topic><topic>Trajectory</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Junyao</creatorcontrib><creatorcontrib>Zhang, Sihai</creatorcontrib><creatorcontrib>Zhu, Jinkang</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Junyao</au><au>Zhang, Sihai</au><au>Zhu, Jinkang</au><au>Ni, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>It has been claimed that human mobility is highly predictable and an upper bound of 93% predictability is achievable. However, there is a significant gap between the upper bound of predictability and the actual prediction accuracy in many data sets. This paper points out that this gap is caused by the difference between the user's actual distribution and the hypothesis in the derivation through the analysis on the upper bound of predictability. Then two statistics of the target user's mobility traces are proposed to measure this gap, whose effectiveness is validated by simulated traces and real-world data sets using five prevailing prediction models. The proposed MLP statistics can help with assessing the data quality and designing prediction algorithms. Our work makes the predictability upper bound become a more effective measure and extends the understanding of predictability research in human mobility prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3009868</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5758-2169</orcidid><orcidid>https://orcid.org/0000-0002-4382-7580</orcidid><orcidid>https://orcid.org/0000-0001-9177-0315</orcidid><orcidid>https://orcid.org/0000-0002-0967-1762</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9142211 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Call Detail Records Data models Datasets Entropy Human Mobility Predictability Markov processes Mobility Prediction algorithms Prediction models Predictive models Quality assessment Real Entropy Trajectory Upper bound Upper bounds |
title | Measuring the Gap between the Maximum Predictability and Prediction Accuracy of Human Mobility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Gap%20between%20the%20Maximum%20Predictability%20and%20Prediction%20Accuracy%20of%20Human%20Mobility&rft.jtitle=IEEE%20access&rft.au=Guo,%20Junyao&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3009868&rft_dat=%3Cproquest_ieee_%3E2454642204%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454642204&rft_id=info:pmid/&rft_ieee_id=9142211&rft_doaj_id=oai_doaj_org_article_35c241cb255e414fba5bd9cac716b28b&rfr_iscdi=true |