Performance Bounds for Complex-Valued Independent Vector Analysis

Independent Vector Analysis (IVA) is a method for joint Blind Source Separation of multiple datasets with wide area of applications including audio source separation, biomedical data analysis, etc. In this paper, identification conditions and Cramér-Rao Lower Bound (CRLB) on the achievable accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.4258-4267
Hauptverfasser: Kautsky, Vaclav, Tichavsky, Petr, Koldovsky, Zbynek, Adal, Tulay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4267
container_issue
container_start_page 4258
container_title IEEE transactions on signal processing
container_volume 68
creator Kautsky, Vaclav
Tichavsky, Petr
Koldovsky, Zbynek
Adal, Tulay
description Independent Vector Analysis (IVA) is a method for joint Blind Source Separation of multiple datasets with wide area of applications including audio source separation, biomedical data analysis, etc. In this paper, identification conditions and Cramér-Rao Lower Bound (CRLB) on the achievable accuracy are derived for the complex-valued case involving circular and non-circular signals and correlated and uncorrelated datasets. The identification conditions describe when independent sources can be separated from their linear mixture in the statistically consistent manner. The CRLB shows how non-Gaussianty, non-circularity of sources and statistical dependence between datasets influence the attainable separation accuracy. Examples presented in the experimental part confirm the validity of the CRLB. Also, they show certain gap between the attainable accuracy and performance of state-of-the-art algorithms, especially, in case of highly non-circular signals. Hence, there is a room for possible improvements.
doi_str_mv 10.1109/TSP.2020.3009507
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9141450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9141450</ieee_id><sourcerecordid>2431086084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bda3948887d57e0fdaeca8689def0cfbdb85acd08918f9907646fa20838183023</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562TTTabHGvxo1CwYC3eQppMoGW7uya7YP-9KS1e5gOedxgeQu4pTCgF9bT6XE4KKGDCAFQJ1QUZUcVpDrwSl2mGkuWlrL6vyU2MOwDKuRIjMl1i8G3Ym8Zi9twOjYtZ2rNZu-9q_M3Xph7QZfPGYYepNH22RtsnYtqY-hC38ZZceVNHvDv3Mfl6fVnN3vPFx9t8Nl3klgna5xtnmOJSysqVFYJ3Bq2RQiqHHqzfuI0sjXUgFZVeKagEF94UIJmkkkHBxuTxdLcL7c-Asde7dgjpiagLzihIAZInCk6UDW2MAb3uwnZvwkFT0EdROonSR1H6LCpFHk6RLSL-44pyyktgf8C1Y9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431086084</pqid></control><display><type>article</type><title>Performance Bounds for Complex-Valued Independent Vector Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Kautsky, Vaclav ; Tichavsky, Petr ; Koldovsky, Zbynek ; Adal, Tulay</creator><creatorcontrib>Kautsky, Vaclav ; Tichavsky, Petr ; Koldovsky, Zbynek ; Adal, Tulay</creatorcontrib><description>Independent Vector Analysis (IVA) is a method for joint Blind Source Separation of multiple datasets with wide area of applications including audio source separation, biomedical data analysis, etc. In this paper, identification conditions and Cramér-Rao Lower Bound (CRLB) on the achievable accuracy are derived for the complex-valued case involving circular and non-circular signals and correlated and uncorrelated datasets. The identification conditions describe when independent sources can be separated from their linear mixture in the statistically consistent manner. The CRLB shows how non-Gaussianty, non-circularity of sources and statistical dependence between datasets influence the attainable separation accuracy. Examples presented in the experimental part confirm the validity of the CRLB. Also, they show certain gap between the attainable accuracy and performance of state-of-the-art algorithms, especially, in case of highly non-circular signals. Hence, there is a room for possible improvements.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.3009507</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Audio data ; Biomedical data ; Blind source separation ; Circularity ; complex-valued signal processing ; Covariance matrices ; Cramér-Rao lower bound ; Data analysis ; Datasets ; Electroencephalography ; Frequency-domain analysis ; Functional magnetic resonance imaging ; independent component/vector analysis ; Lower bounds ; non-circular sources ; Probability density function ; Separation ; Signal processing ; Signal processing algorithms ; Vector analysis</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.4258-4267</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-bda3948887d57e0fdaeca8689def0cfbdb85acd08918f9907646fa20838183023</citedby><cites>FETCH-LOGICAL-c361t-bda3948887d57e0fdaeca8689def0cfbdb85acd08918f9907646fa20838183023</cites><orcidid>0000-0003-0594-2796 ; 0000-0003-0621-4766 ; 0000-0002-1791-5675 ; 0000-0002-7042-0858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9141450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9141450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kautsky, Vaclav</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Koldovsky, Zbynek</creatorcontrib><creatorcontrib>Adal, Tulay</creatorcontrib><title>Performance Bounds for Complex-Valued Independent Vector Analysis</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Independent Vector Analysis (IVA) is a method for joint Blind Source Separation of multiple datasets with wide area of applications including audio source separation, biomedical data analysis, etc. In this paper, identification conditions and Cramér-Rao Lower Bound (CRLB) on the achievable accuracy are derived for the complex-valued case involving circular and non-circular signals and correlated and uncorrelated datasets. The identification conditions describe when independent sources can be separated from their linear mixture in the statistically consistent manner. The CRLB shows how non-Gaussianty, non-circularity of sources and statistical dependence between datasets influence the attainable separation accuracy. Examples presented in the experimental part confirm the validity of the CRLB. Also, they show certain gap between the attainable accuracy and performance of state-of-the-art algorithms, especially, in case of highly non-circular signals. Hence, there is a room for possible improvements.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Audio data</subject><subject>Biomedical data</subject><subject>Blind source separation</subject><subject>Circularity</subject><subject>complex-valued signal processing</subject><subject>Covariance matrices</subject><subject>Cramér-Rao lower bound</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Electroencephalography</subject><subject>Frequency-domain analysis</subject><subject>Functional magnetic resonance imaging</subject><subject>independent component/vector analysis</subject><subject>Lower bounds</subject><subject>non-circular sources</subject><subject>Probability density function</subject><subject>Separation</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Vector analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562TTTabHGvxo1CwYC3eQppMoGW7uya7YP-9KS1e5gOedxgeQu4pTCgF9bT6XE4KKGDCAFQJ1QUZUcVpDrwSl2mGkuWlrL6vyU2MOwDKuRIjMl1i8G3Ym8Zi9twOjYtZ2rNZu-9q_M3Xph7QZfPGYYepNH22RtsnYtqY-hC38ZZceVNHvDv3Mfl6fVnN3vPFx9t8Nl3klgna5xtnmOJSysqVFYJ3Bq2RQiqHHqzfuI0sjXUgFZVeKagEF94UIJmkkkHBxuTxdLcL7c-Asde7dgjpiagLzihIAZInCk6UDW2MAb3uwnZvwkFT0EdROonSR1H6LCpFHk6RLSL-44pyyktgf8C1Y9A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kautsky, Vaclav</creator><creator>Tichavsky, Petr</creator><creator>Koldovsky, Zbynek</creator><creator>Adal, Tulay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0594-2796</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0002-1791-5675</orcidid><orcidid>https://orcid.org/0000-0002-7042-0858</orcidid></search><sort><creationdate>2020</creationdate><title>Performance Bounds for Complex-Valued Independent Vector Analysis</title><author>Kautsky, Vaclav ; Tichavsky, Petr ; Koldovsky, Zbynek ; Adal, Tulay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bda3948887d57e0fdaeca8689def0cfbdb85acd08918f9907646fa20838183023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Audio data</topic><topic>Biomedical data</topic><topic>Blind source separation</topic><topic>Circularity</topic><topic>complex-valued signal processing</topic><topic>Covariance matrices</topic><topic>Cramér-Rao lower bound</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Electroencephalography</topic><topic>Frequency-domain analysis</topic><topic>Functional magnetic resonance imaging</topic><topic>independent component/vector analysis</topic><topic>Lower bounds</topic><topic>non-circular sources</topic><topic>Probability density function</topic><topic>Separation</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Vector analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kautsky, Vaclav</creatorcontrib><creatorcontrib>Tichavsky, Petr</creatorcontrib><creatorcontrib>Koldovsky, Zbynek</creatorcontrib><creatorcontrib>Adal, Tulay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kautsky, Vaclav</au><au>Tichavsky, Petr</au><au>Koldovsky, Zbynek</au><au>Adal, Tulay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Bounds for Complex-Valued Independent Vector Analysis</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>4258</spage><epage>4267</epage><pages>4258-4267</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Independent Vector Analysis (IVA) is a method for joint Blind Source Separation of multiple datasets with wide area of applications including audio source separation, biomedical data analysis, etc. In this paper, identification conditions and Cramér-Rao Lower Bound (CRLB) on the achievable accuracy are derived for the complex-valued case involving circular and non-circular signals and correlated and uncorrelated datasets. The identification conditions describe when independent sources can be separated from their linear mixture in the statistically consistent manner. The CRLB shows how non-Gaussianty, non-circularity of sources and statistical dependence between datasets influence the attainable separation accuracy. Examples presented in the experimental part confirm the validity of the CRLB. Also, they show certain gap between the attainable accuracy and performance of state-of-the-art algorithms, especially, in case of highly non-circular signals. Hence, there is a room for possible improvements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.3009507</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0594-2796</orcidid><orcidid>https://orcid.org/0000-0003-0621-4766</orcidid><orcidid>https://orcid.org/0000-0002-1791-5675</orcidid><orcidid>https://orcid.org/0000-0002-7042-0858</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2020, Vol.68, p.4258-4267
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_9141450
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Audio data
Biomedical data
Blind source separation
Circularity
complex-valued signal processing
Covariance matrices
Cramér-Rao lower bound
Data analysis
Datasets
Electroencephalography
Frequency-domain analysis
Functional magnetic resonance imaging
independent component/vector analysis
Lower bounds
non-circular sources
Probability density function
Separation
Signal processing
Signal processing algorithms
Vector analysis
title Performance Bounds for Complex-Valued Independent Vector Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Bounds%20for%20Complex-Valued%20Independent%20Vector%20Analysis&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kautsky,%20Vaclav&rft.date=2020&rft.volume=68&rft.spage=4258&rft.epage=4267&rft.pages=4258-4267&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.3009507&rft_dat=%3Cproquest_RIE%3E2431086084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431086084&rft_id=info:pmid/&rft_ieee_id=9141450&rfr_iscdi=true